Simple proteomic checks for detecting noncoding RNA

Proper validation can accelerate sequence‐based discovery of proteins and protein‐coding genes. Databases currently contain a backlog of experimentally unverified gene models and tentative assignments of observed transcripts to coding or noncoding RNA. We present and apply a general principle, founded on base composition and the genetic code and validated here by bulk 2‐D gels, that can improve the reliability of such classifications and of the algorithms or pipelines that lead to them.

[1]  G. Bernardi,et al.  Simple proteomic checks for detecting noncoding RNA , 2007 .

[2]  Takuro Tamura,et al.  Investigation of protein functions through data-mining on integrated human transcriptome database, H-Invitational database (H-InvDB). , 2005, Gene.

[3]  J. Claverie Fewer Genes, More Noncoding RNA , 2005, Science.

[4]  S. Salzberg,et al.  The Transcriptional Landscape of the Mammalian Genome , 2005, Science.

[5]  Takuji Sasaki,et al.  The map-based sequence of the rice genome , 2005, Nature.

[6]  大房 健 基礎講座 電気泳動(Electrophoresis) , 2005 .

[7]  John M. Walker,et al.  The Proteomics Protocols Handbook , 2005, Humana Press.

[8]  Jianxin Ma,et al.  Consistent over-estimation of gene number in complex plant genomes. , 2004, Current opinion in plant biology.

[9]  Kelvin H Lee,et al.  Towards two‐dimensional electrophoresis mapping of the cerebrospinal fluid proteome from a single individual , 2004, Electrophoresis.

[10]  L. Brocchieri Environmental signatures in proteome properties. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[11]  C. Southan Has the yo‐yo stopped? An assessment of human protein‐coding gene number , 2004, Proteomics.

[12]  G. Bernardi,et al.  The new genes of rice: a closer look. , 2004, Trends in plant science.

[13]  Paul B Rainey,et al.  Global analysis of predicted proteomes: functional adaptation of physical properties. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[14]  G. Bernardi,et al.  Compositional gene landscapes in vertebrates. , 2004, Genome research.

[15]  Kanako O. Koyanagi,et al.  Integrative Annotation of 21,037 Human Genes Validated by Full-Length cDNA Clones , 2004, PLoS Biology.

[16]  Dieter Jahn,et al.  JVirGel: calculation of virtual two-dimensional protein gels , 2003, Nucleic Acids Res..

[17]  P. Hains,et al.  Strategies for the enrichment and identification of basic proteins in proteome projects , 2003, Proteomics.

[18]  Kamel Jabbari,et al.  Compositional Features of Eukaryotic Genomes for Checking Predicted Genes , 2003, Briefings Bioinform..

[19]  S. Gygi,et al.  Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[20]  T. Rudel,et al.  A two dimensional electrophoresis database of a human Jurkat T‐cell line , 2000, Electrophoresis.

[21]  A. Görg,et al.  Recent developments in two‐dimensional gel electrophoresis with immobilized pH gradients: Wide pH gradients up to pH 12, longer separation distances and simplified procedures , 1999, Electrophoresis.

[22]  C. S. Patrickios,et al.  Polypeptide Amino Acid Composition and Isoelectric Point , 1995 .

[23]  C S Patrickios,et al.  Polypeptide amino acid composition and isoelectric point. II. Comparison between experiment and theory. , 1995, Analytical biochemistry.