Influence diagnostics for elliptical semiparametric mixed models

In this paper we extend semiparametric mixed linear models with normal errors to elliptical errors in order to permit distributions with heavier and lighter tails than the normal ones. Penalized likelihood equations are applied to derive the maximum penalized likelihood estimates (MPLEs) which appear to be robust against outlying observations in the sense of the Mahalanobis distance. A reweighed iterative process based on the back-fitting method is proposed for the parameter estimation and the local influence curvatures are derived under some usual perturbation schemes to study the sensitivity of the MPLEs. Two motivating examples preliminarily analyzed under normal errors are reanalyzed considering some appropriate elliptical errors. The local influence approach is used to compare the sensitivity of the model estimates.

[1]  G. Reinsel,et al.  Models for Longitudinal Data with Random Effects and AR(1) Errors , 1989 .

[2]  B. Park,et al.  Influence diagnostics in semiparametric regression models , 2002 .

[3]  José A. Díaz-García,et al.  Influence Diagnostics for Elliptical Multivariate Linear Regression Models , 2003 .

[4]  E Lesaffre,et al.  Local influence in linear mixed models. , 1998, Biometrics.

[5]  P. Diggle,et al.  Semiparametric models for longitudinal data with application to CD4 cell numbers in HIV seroconverters. , 1994, Biometrics.

[6]  J. Ware,et al.  Random-effects models for longitudinal data. , 1982, Biometrics.

[7]  P. Speckman Kernel smoothing in partial linear models , 1988 .

[8]  Nancy E. Heckman,et al.  Spline Smoothing in a Partly Linear Model , 1986 .

[9]  Shuangzhe Liu,et al.  Local influence in multivariate elliptical linear regression models , 2002 .

[10]  M P Wand,et al.  Robustness for general design mixed models using the t-distribution , 2009 .

[11]  R. Rigby,et al.  Generalized additive models for location, scale and shape , 2005 .

[12]  P. Green Penalized Likelihood for General Semi-Parametric Regression Models. , 1987 .

[13]  Felipe Osorio,et al.  Assessment of local influence in elliptical linear models with longitudinal structure , 2007, Comput. Stat. Data Anal..

[14]  Gilberto A. Paula,et al.  Local influence for Student-t partially linear models , 2011, Comput. Stat. Data Anal..

[15]  Xuming He,et al.  Local Influence Analysis for Penalized Gaussian Likelihood Estimators in Partially Linear Models , 2003 .

[16]  Heleno Bolfarine,et al.  Local influence in elliptical linear regression models , 1997 .

[17]  Ying Nian Wu,et al.  Efficient Algorithms for Robust Estimation in Linear Mixed-Effects Models Using the Multivariate t Distribution , 2001 .

[18]  Gary O. Zerbe,et al.  Randomization Analysis of the Completely Randomized Design Extended to Growth and Response Curves , 1979 .

[19]  Christian Gourieroux,et al.  Statistics and econometric models , 1995 .

[20]  Andre Lucas,et al.  Robustness of the student t based M-estimator , 1997 .

[21]  Gilberto A. Paula,et al.  Assessment of variance components in elliptical linear mixed models , 2006 .

[22]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[23]  Yuedong Wang Mixed effects smoothing spline analysis of variance , 1998 .

[24]  Wing K. Fung,et al.  Influence diagnostics and outlier tests for semiparametric mixed models , 2002 .

[25]  Jeremy MG Taylor,et al.  Robust Statistical Modeling Using the t Distribution , 1989 .

[26]  J. Lindsey,et al.  Multivariate Elliptically Contoured Distributions for Repeated Measurements , 1999, Biometrics.

[27]  Donald B. Rubin,et al.  Max-imum Likelihood from Incomplete Data , 1972 .

[28]  Luis A. Escobar,et al.  Assessing influence in regression analysis with censored data. , 1992, Biometrics.

[29]  Ana Ivelisse Avilés,et al.  Linear Mixed Models for Longitudinal Data , 2001, Technometrics.

[30]  H. Akaike,et al.  Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .

[31]  G. Wahba Bayesian "Confidence Intervals" for the Cross-validated Smoothing Spline , 1983 .

[32]  J. Raz,et al.  Semiparametric Stochastic Mixed Models for Longitudinal Data , 1998 .

[33]  Andrew M. Kuhn,et al.  Growth Curve Models and Statistical Diagnostics , 2003, Technometrics.

[34]  Christopher J. Nachtsheim,et al.  Diagnostics for mixed-model analysis of variance , 1987 .

[35]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[36]  Zhongyi Zhu,et al.  Estimation in a semiparametric model for longitudinal data with unspecified dependence structure , 2002 .

[37]  B. Silverman,et al.  Some Aspects of the Spline Smoothing Approach to Non‐Parametric Regression Curve Fitting , 1985 .

[38]  Mark R. Segal,et al.  Variances for Maximum Penalized Likelihood Estimates Obtained via the EM Algorithm , 1994 .

[39]  B. Silverman,et al.  Nonparametric regression and generalized linear models , 1994 .