Geometric Hamilton-Jacobi theory for nonholonomic dynamical systems
暂无分享,去创建一个
G. Marmo | G. Marmo | J. Cariñena | J. F. Carinena | M. Muñoz-Lecanda | Xavier Gràcia | E. Martínez | N. Román-Roy | E. Martinez | M. C. Munoz-Lecanda | X. Gracia | N. Roman-Roy
[1] O. Krupkova,et al. The relativistic particle as a mechanical system with non-holonomic constraints , 2001 .
[2] V. Arnold. Mathematical Methods of Classical Mechanics , 1974 .
[3] M. León,et al. Towards a Hamilton–Jacobi theory for nonholonomic mechanical systems , 2007, 0705.3739.
[4] J. Sniatycki. Nonholonomic Noether theorem and reduction of symmetries , 1998 .
[5] P J Fox,et al. THE FOUNDATIONS OF MECHANICS. , 1918, Science.
[6] J. Cariñena,et al. Quasi-coordinates from the point of view of Lie algebroid structures , 2007 .
[7] P. Krishnaprasad,et al. Nonholonomic mechanical systems with symmetry , 1996 .
[8] M. León,et al. A Geometric Hamilton-Jacobi Theory for Classical Field Theories , 2008, 0801.1181.
[9] Jerrold E. Marsden,et al. Quasivelocities and symmetries in non-holonomic systems , 2009 .
[10] Jorge V. José,et al. Classical Dynamics: List of Worked Examples , 1998 .
[11] J. Koiller. Reduction of some classical non-holonomic systems with symmetry , 1992 .
[12] N. Mukunda,et al. The Hamilton--Jacobi Theory and the Analogy between Classical and Quantum Mechanics , 2009, 0907.0964.
[13] Jorge Cortes,et al. Reduction and reconstruction of the dynamics of nonholonomic systems , 1999 .
[14] Geometric Hamilton-Jacobi theory , 2006, math-ph/0604063.
[15] David Martín de Diego,et al. On the geometry of non‐holonomic Lagrangian systems , 1996 .
[16] Jair Koiller,et al. Nonholonomic systems via moving frames: Cartan equivalence and Chaplygin Hamiltonization , 2005 .
[17] Charles-Michel Marle,et al. Various approaches to conservative and nonconservative nonholonomic systems , 1998 .
[18] Jorge V. José,et al. Classical Dynamics: Contents , 1998 .
[19] Non-holonomic Lagrangian and Hamiltonian mechanics: an intrinsic approach , 2002 .
[20] Non-holonomic constrained systems as implicit differential equations , 2001, math-ph/0104021.
[21] Regularity and symmetries of nonholonomic systems , 2004, math-ph/0405066.
[22] Jerrold E. Marsden,et al. Foundations of Mechanics: 2nd Edition , 1980 .
[23] J. Cortes,et al. Nonholonomic Lagrangian systems on Lie algebroids , 2005, math-ph/0512003.
[24] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[25] T. B. Putsyata,et al. Analytical dynamics , 1973 .
[26] A Lie algebroid framework for non-holonomic systems , 2004, math/0410460.
[27] Tomoki Ohsawa,et al. Nonholonomic Hamilton-Jacobi equation and integrability , 2009, 0906.3357.
[28] G. Marmo,et al. Hamilton-Jacobi theory and the evolution operator , 2009, 0907.1039.
[29] A. Agrachev,et al. Control Theory from the Geometric Viewpoint , 2004 .
[30] N. Mukunda,et al. A geometrical approach to the Hamilton-Jacobi form of dynamics and its generalizations , 1990 .
[31] Juan Carlos Marrero,et al. Linear almost Poisson structures and Hamilton-Jacobi equation. Applications to nonholonomic Mechanics , 2008, 0801.4358.
[32] G. Hamel,et al. Theoretische Mechanik: Eine Einheitliche Einfuhrung in die Gesamte Mechanik , 1968 .
[33] Eduardo Martínez. Lagrangian Mechanics on Lie Algebroids , 2001 .
[34] J. V. José,et al. Classical Dynamics: A Contemporary Approach , 1998 .