Geometric Hamilton-Jacobi theory for nonholonomic dynamical systems

The geometric formulation of Hamilton–Jacobi theory for systems with nonholonomic constraints is developed, following the ideas of the authors in previous papers. The relation between the solutions of the Hamilton–Jacobi problem with the symplectic structure defined from the Lagrangian function and the constraints is studied. The concept of complete solutions and their relationship with constants of motion, are also studied in detail. Local expressions using quasivelocities are provided. As an example, the nonholonomic free particle is considered.

[1]  O. Krupkova,et al.  The relativistic particle as a mechanical system with non-holonomic constraints , 2001 .

[2]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[3]  M. León,et al.  Towards a Hamilton–Jacobi theory for nonholonomic mechanical systems , 2007, 0705.3739.

[4]  J. Sniatycki Nonholonomic Noether theorem and reduction of symmetries , 1998 .

[5]  P J Fox,et al.  THE FOUNDATIONS OF MECHANICS. , 1918, Science.

[6]  J. Cariñena,et al.  Quasi-coordinates from the point of view of Lie algebroid structures , 2007 .

[7]  P. Krishnaprasad,et al.  Nonholonomic mechanical systems with symmetry , 1996 .

[8]  M. León,et al.  A Geometric Hamilton-Jacobi Theory for Classical Field Theories , 2008, 0801.1181.

[9]  Jerrold E. Marsden,et al.  Quasivelocities and symmetries in non-holonomic systems , 2009 .

[10]  Jorge V. José,et al.  Classical Dynamics: List of Worked Examples , 1998 .

[11]  J. Koiller Reduction of some classical non-holonomic systems with symmetry , 1992 .

[12]  N. Mukunda,et al.  The Hamilton--Jacobi Theory and the Analogy between Classical and Quantum Mechanics , 2009, 0907.0964.

[13]  Jorge Cortes,et al.  Reduction and reconstruction of the dynamics of nonholonomic systems , 1999 .

[14]  Geometric Hamilton-Jacobi theory , 2006, math-ph/0604063.

[15]  David Martín de Diego,et al.  On the geometry of non‐holonomic Lagrangian systems , 1996 .

[16]  Jair Koiller,et al.  Nonholonomic systems via moving frames: Cartan equivalence and Chaplygin Hamiltonization , 2005 .

[17]  Charles-Michel Marle,et al.  Various approaches to conservative and nonconservative nonholonomic systems , 1998 .

[18]  Jorge V. José,et al.  Classical Dynamics: Contents , 1998 .

[19]  Non-holonomic Lagrangian and Hamiltonian mechanics: an intrinsic approach , 2002 .

[20]  Non-holonomic constrained systems as implicit differential equations , 2001, math-ph/0104021.

[21]  Regularity and symmetries of nonholonomic systems , 2004, math-ph/0405066.

[22]  Jerrold E. Marsden,et al.  Foundations of Mechanics: 2nd Edition , 1980 .

[23]  J. Cortes,et al.  Nonholonomic Lagrangian systems on Lie algebroids , 2005, math-ph/0512003.

[24]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[25]  T. B. Putsyata,et al.  Analytical dynamics , 1973 .

[26]  A Lie algebroid framework for non-holonomic systems , 2004, math/0410460.

[27]  Tomoki Ohsawa,et al.  Nonholonomic Hamilton-Jacobi equation and integrability , 2009, 0906.3357.

[28]  G. Marmo,et al.  Hamilton-Jacobi theory and the evolution operator , 2009, 0907.1039.

[29]  A. Agrachev,et al.  Control Theory from the Geometric Viewpoint , 2004 .

[30]  N. Mukunda,et al.  A geometrical approach to the Hamilton-Jacobi form of dynamics and its generalizations , 1990 .

[31]  Juan Carlos Marrero,et al.  Linear almost Poisson structures and Hamilton-Jacobi equation. Applications to nonholonomic Mechanics , 2008, 0801.4358.

[32]  G. Hamel,et al.  Theoretische Mechanik: Eine Einheitliche Einfuhrung in die Gesamte Mechanik , 1968 .

[33]  Eduardo Martínez Lagrangian Mechanics on Lie Algebroids , 2001 .

[34]  J. V. José,et al.  Classical Dynamics: A Contemporary Approach , 1998 .