A Quantum von Neumann Architecture for Large-Scale Quantum Computing in Systems with Long Coherence Times, such as Trapped Ions

As the size of quantum systems becomes bigger, more complicated hardware is required to control these systems. In order to reduce the complexity, I discuss the amount of parallelism required for a fault-tolerant quantum computer and what computation speed can be achieved in different architectures. To build a large-scale quantum computer, one can use architectural principles, from classical computer architecture, like multiplexing or pipelining. In this document, a Quantum von Neumann architecture is introduced which uses specialized hardware for the different tasks of a quantum computer, like computation or storage. Furthermore, it requires long qubit coherence and the capability to move quantum information between the different parts of the quantum computer. As an example, a Quantum von Neumann architecture for trapped ions is presented which incorporates multiplexing in the memory region for large-scale quantum computation. To illustrate the capability of this architecture, a model trapped ion quantum computer based on Quantum von Neumann architecture, the Quantum 4004, is introduced. Its hardware is optimized for simplicity and uses the classical Intel 4004 CPU from 1971 as a blueprint. The Quantum 4004 has only a single processing zone and is structured in 4 qubit packages. Its quantum memory can store up to 32768 qubit ions and its computation speed is 10 $\mu$s for single qubit operations and 20 $\mu$s for two-qubit operations.

[1]  J. J. Hamilton,et al.  Frequency noise induced by fiber perturbations in a fiber-linked stabilized laser. , 1992, Applied optics.

[2]  C. Monroe,et al.  Experimental Issues in Coherent Quantum-State Manipulation of Trapped Atomic Ions , 1997, Journal of research of the National Institute of Standards and Technology.

[3]  C. Monroe,et al.  Scaling the Ion Trap Quantum Processor , 2013, Science.

[4]  Y. Colombe,et al.  Individual-ion addressing with microwave field gradients. , 2012, Physical review letters.

[5]  M D Barrett,et al.  Enhanced quantum state detection efficiency through quantum information processing. , 2005, Physical review letters.

[6]  D. Leibfried,et al.  UV-sensitive superconducting nanowire single photon detectors for integration in an ion trap. , 2016, Optics express.

[7]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[8]  Daniel Nigg,et al.  Compiling quantum algorithms for architectures with multi-qubit gates , 2016, 1601.06819.

[9]  R. V. Meter,et al.  Layered architecture for quantum computing , 2010, 1010.5022.

[10]  A. Zeilinger,et al.  Going Beyond Bell’s Theorem , 2007, 0712.0921.

[11]  M. Abgrall,et al.  Absolute Frequency Measurement of the 40Ca+ 4s 2S1/2 -3d2D5/2 Clock Transition , 2008, 0806.1414.

[12]  Jim Euchner Design , 2014, Catalysis from A to Z.

[13]  C. Monroe,et al.  Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects , 2012, 1208.0391.

[14]  Christopher R. Monroe,et al.  Near-perfect simultaneous measurement of a qubit register , 2006, Quantum Inf. Comput..

[15]  F. Leupold,et al.  Generation of large coherent states by bang–bang control of a trapped-ion oscillator , 2016, Nature Communications.

[16]  R. Ozeri,et al.  The trapped-ion qubit tool box , 2011, 1106.1190.

[17]  I D Conway Lamb,et al.  An FPGA-based instrumentation platform for use at deep cryogenic temperatures. , 2015, The Review of scientific instruments.

[18]  M. B. Plenio,et al.  Quantum gates and memory using microwave-dressed states , 2011, Nature.

[19]  T. R. Tan,et al.  Coherent diabatic ion transport and separation in a multizone trap array. , 2012, Physical review letters.

[20]  R. G. Mills,et al.  OBSERVATION OF PERSISTENT CURRENT IN A SUPERCONDUCTING SOLENOID , 1963 .

[21]  F. Nori,et al.  Quantum Simulation , 2013, Quantum Atom Optics.

[22]  D. DiVincenzo,et al.  The Physical Implementation of Quantum Computation , 2000, quant-ph/0002077.

[23]  W. Meissner,et al.  Ein neuer Effekt bei Eintritt der Supraleitfähigkeit , 1933, Naturwissenschaften.

[24]  Frederic T. Chong,et al.  Quantum Memory Hierarchies: Efficient Designs to Match Available Parallelism in Quantum Computing , 2006, 33rd International Symposium on Computer Architecture (ISCA'06).

[25]  D. Leibfried,et al.  Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate , 2003, Nature.

[26]  A. Steane Space, Time, Parallelism and Noise Requirements for Reliable Quantum Computing , 1997, quant-ph/9708021.

[27]  Takayuki Tomaru,et al.  Vibration-Free Pulse Tube Cryocooler System for Gravitational Wave Detectors, Part II: Cooling Performance and Vibration , 2005 .

[28]  D M Lucas,et al.  High-fidelity readout of trapped-ion qubits. , 2008, Physical review letters.

[29]  E. Knill Quantum computing with realistically noisy devices , 2005, Nature.

[30]  J. Home Quantum science and metrology with mixed-species ion chains , 2013, 1306.5950.

[31]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[32]  Y. Colombe,et al.  Efficient fiber optic detection of trapped ion fluorescence. , 2010, Physical review letters.

[33]  C. Flühmann,et al.  Spectral filtering and laser diode injection for multi-qubit trapped ion gates , 2015 .

[34]  C. Monroe,et al.  Architecture for a large-scale ion-trap quantum computer , 2002, Nature.

[35]  J. Cirac,et al.  Quantum Computations with Cold Trapped Ions. , 1995, Physical review letters.

[36]  Sandberg,et al.  Shelved optical electron amplifier: Observation of quantum jumps. , 1986, Physical review letters.

[37]  R. Bowler,et al.  Multi-element logic gates for trapped-ion qubits , 2015, Nature.

[38]  D. Deutsch,et al.  Rapid solution of problems by quantum computation , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[39]  S. Lloyd,et al.  DYNAMICAL SUPPRESSION OF DECOHERENCE IN TWO-STATE QUANTUM SYSTEMS , 1998, quant-ph/9803057.

[40]  J. P. Dehollain,et al.  A two-qubit logic gate in silicon , 2014, Nature.

[41]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[42]  T. Monz,et al.  Cryogenic setup for trapped ion quantum computing. , 2016, The Review of scientific instruments.

[43]  N. Linke,et al.  High-Fidelity Quantum Logic Gates Using Trapped-Ion Hyperfine Qubits. , 2015, Physical review letters.

[44]  Krysta Marie Svore,et al.  LIQUi|>: A Software Design Architecture and Domain-Specific Language for Quantum Computing , 2014, ArXiv.

[45]  J. Cirac,et al.  Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network , 1996, quant-ph/9611017.

[46]  Carl Hamacher,et al.  Computer Organization and Embedded Systems , 1980 .

[47]  Editors , 1986, Brain Research Bulletin.

[48]  J. Maňka,et al.  Active compensation for ambient magnetic noise in the unshielded environment , 1993 .

[49]  R. Feynman Simulating physics with computers , 1999 .

[50]  D. Stick,et al.  Design, fabrication and experimental demonstration of junction surface ion traps , 2011 .

[51]  D Hayes,et al.  Heralded quantum gate between remote quantum memories. , 2009, Physical review letters.

[52]  J. Britton,et al.  Errors in trapped-ion quantum gates due to spontaneous photon scattering , 2006, quant-ph/0611048.

[53]  C. Day,et al.  Basics and applications of cryopumps , 2007 .

[54]  R. Blatt,et al.  Tunable Ion-Photon Entanglement in an Optical Cavity , 2012, Nature.

[55]  Andrew W. Cross,et al.  A quantum logic array microarchitecture: scalable quantum data movement and computation , 2005, 38th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO'05).

[56]  P. Souers,et al.  Hydrogen Properties for Fusion Energy , 1986 .

[57]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[58]  Marco Lanzagorta,et al.  Quantum Simulators , 2013 .

[59]  R. Ishihara,et al.  Interfacing spin qubits in quantum dots and donors—hot, dense, and coherent , 2017, npj Quantum Information.

[60]  E. Lucero,et al.  Computing prime factors with a Josephson phase qubit quantum processor , 2012, Nature Physics.

[61]  S. Girvin,et al.  Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics , 2004, Nature.

[62]  Wojciech H. Zurek,et al.  Sympathetic cooling of trapped ions for quantum logic , 2000 .

[63]  Simon J. Devitt,et al.  Blueprint for a microwave trapped ion quantum computer , 2015, Science Advances.

[64]  F. Schmidt-Kaler,et al.  Ion strings for quantum gates , 1998 .

[65]  L S Ma,et al.  Delivering the same optical frequency at two places: accurate cancellation of phase noise introduced by an optical fiber or other time-varying path. , 1994, Optics letters.

[66]  N. Linke,et al.  High-Fidelity Preparation, Gates, Memory, and Readout of a Trapped-Ion Quantum Bit. , 2014, Physical review letters.

[67]  Wineland,et al.  Sympathetic cooling of trapped ions: A laser-cooled two-species nonneutral ion plasma. , 1986, Physical review letters.

[68]  K. R. Brown,et al.  Microwave quantum logic gates for trapped ions , 2011, Nature.

[69]  David Leibrandt,et al.  Suppression of heating rates in cryogenic surface-electrode ion traps. , 2007, Physical review letters.

[70]  Dietrich Leibfried,et al.  Single-mode optical fiber for high-power, low-loss UV transmission. , 2014, Optics express.

[71]  T. Monz,et al.  Realization of a scalable Shor algorithm , 2015, Science.

[72]  J. P. Dehollain,et al.  An addressable quantum dot qubit with fault-tolerant control-fidelity. , 2014, Nature nanotechnology.

[73]  D. Leibfried,et al.  Near-ground-state transport of trapped-ion qubits through a multidimensional array , 2011, 1106.5005.

[74]  Blatt,et al.  Observation of quantum jumps. , 1986, Physical review letters.

[75]  W. Hamilton Superconducting shielding , 2016 .

[76]  M. Sellars,et al.  Accurate measurement of the 12.6 GHz "clock" transition in trapped (171)Yb(+) ions. , 1997, IEEE transactions on ultrasonics, ferroelectrics, and frequency control.

[77]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[78]  F. Mintert,et al.  Ion-trap quantum logic using long-wavelength radiation. , 2001, Physical review letters.

[79]  M. A. Rowe,et al.  Heating of trapped ions from the quantum ground state , 2000 .

[80]  J. Britton,et al.  Quantum information processing with trapped ions , 2002, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[81]  G. Uhrig Keeping a quantum bit alive by optimized pi-pulse sequences. , 2006, Physical review letters.

[82]  K. Mølmer,et al.  QUANTUM COMPUTATION WITH IONS IN THERMAL MOTION , 1998, quant-ph/9810039.

[83]  Wineland,et al.  Observation of quantum jumps in a single atom. , 1986, Physical review letters.

[84]  David J. Wineland,et al.  Minimization of ion micromotion in a Paul trap , 1998 .

[85]  F. Schmidt-Kaler,et al.  A long-lived Zeeman trapped-ion qubit , 2016, 1606.07220.

[86]  Aaron C. E. Lee,et al.  Experimental Performance of a Quantum Simulator: Optimizing Adiabatic Evolution and Identifying Many-Body Ground States , 2013, 1305.2253.

[87]  G.E. Moore,et al.  Cramming More Components Onto Integrated Circuits , 1998, Proceedings of the IEEE.

[88]  John von Neumann,et al.  First draft of a report on the EDVAC , 1993, IEEE Annals of the History of Computing.

[89]  Observing a single hydrogen-like ion in a Penning trap at T = 4 K , 1998 .

[90]  A. Kitaev Quantum Error Correction with Imperfect Gates , 1997 .

[91]  Rodney Van Meter,et al.  A blueprint for building a quantum computer , 2013, Commun. ACM.

[92]  Aaron J. Miller,et al.  Counting near-infrared single-photons with 95% efficiency. , 2008, Optics express.

[93]  Rick A. Rand,et al.  Microminiature packaging and integrated circuitry: The work of E. F. Rent, with an application to on-chip interconnection requirements , 2005, IBM J. Res. Dev..

[94]  Roy L. Russo,et al.  On a Pin Versus Block Relationship For Partitions of Logic Graphs , 1971, IEEE Transactions on Computers.

[95]  C. F. Roos,et al.  Optimal control of entangling operations for trapped-ion quantum computing , 2008, 0809.1414.

[96]  M. Saffman,et al.  Rydberg-blockade controlled-not gate and entanglement in a two-dimensional array of neutral-atom qubits , 2015, 1506.06416.

[97]  P.T.H. Fisk,et al.  Accurate measurement of the 12.6 GHz "clock" transition in trapped /sup 171/Yb/sup +/ ions , 1997, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[98]  S. Debnath,et al.  Demonstration of a small programmable quantum computer with atomic qubits , 2016, Nature.

[99]  D. Wineland,et al.  A 303-MHz frequency standard based on trapped Be/sup +/ ions , 1990, Conference on Precision Electromagnetic Measurements.

[100]  T. Gudmundsen,et al.  Improved superconducting qubit coherence with high-temperature substrate annealing , 2016, 1606.09262.

[101]  Fedor Jelezko,et al.  Single defect centres in diamond: A review , 2006 .

[102]  R. Schoelkopf,et al.  Superconducting Circuits for Quantum Information: An Outlook , 2013, Science.

[103]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[104]  R. Barends,et al.  Superconducting quantum circuits at the surface code threshold for fault tolerance , 2014, Nature.

[105]  Andrew S. Tanenbaum,et al.  Structured Computer Organization , 1976 .

[106]  David J. Wineland,et al.  Sympathetic cooling of 9Be+ and 24Mg+ for quantum logic , 2003 .

[107]  Measurement of the magnetic interaction between two bound electrons of two separate ions , 2014, Nature.

[108]  Jungsang Kim,et al.  Integrated optical approach to trapped ion quantum computation , 2007, Quantum Inf. Comput..

[109]  J. Chiaverini,et al.  Insensitivity of the rate of ion motional heating to trap-electrode material over a large temperature range , 2013, 1310.4385.

[110]  S. Girvin,et al.  Charge-insensitive qubit design derived from the Cooper pair box , 2007, cond-mat/0703002.

[111]  F. Nori,et al.  Quantum Simulators , 2009, Science.

[112]  A. Ashkin Acceleration and trapping of particles by radiation pressure , 1970 .

[113]  R. Blatt,et al.  Ion-trap measurements of electric-field noise near surfaces , 2014, 1409.6572.

[114]  P. Schmidt,et al.  Sympathetic Cooling of Mixed Species Two-Ion Crystals for Precision Spectroscopy , 2012, 1202.2730.

[115]  Benno Willke,et al.  Laser power stabilization for second-generation gravitational wave detectors. , 2006, Optics letters.

[116]  Michael Niedermayr,et al.  Cryogenic surface ion trap based on intrinsic silicon , 2014 .

[117]  A. Steane Multiple-particle interference and quantum error correction , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[118]  E. Garst,et al.  Birth , 1954 .

[119]  L. DiCarlo,et al.  Deterministic entanglement of superconducting qubits by parity measurement and feedback , 2013, Nature.

[120]  Takayuki Tomaru,et al.  Vibration-Free Pulse Tube Cryocooler System for Gravitational Wave Detectors, Part I: Vibration-Reduction Method and Measurement , 2005 .

[121]  Gordon E. Moore,et al.  Progress in digital integrated electronics , 1975 .

[122]  A Walther,et al.  Controlling fast transport of cold trapped ions. , 2012, Physical review letters.

[123]  P. Zanardi,et al.  Noiseless Quantum Codes , 1997, quant-ph/9705044.

[124]  Erik Lucero,et al.  Implementing the Quantum von Neumann Architecture with Superconducting Circuits , 2011, Science.

[125]  T. Tweed Space , 2011, STEM Education in the Primary School.

[126]  E. Knill,et al.  Resilient quantum computation: error models and thresholds , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[127]  B. Widrow,et al.  Birth, Life, and Death in Microelectronic Systems , 1961, IRE Transactions on Military Electronics.

[128]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[129]  W. Sachtler,et al.  The work function of gold , 1966 .

[130]  Gerhard Klimeck,et al.  Electrically controlling single-spin qubits in a continuous microwave field , 2015, Science Advances.

[131]  J. Hughes,et al.  Transport of Quantum States and Separation of Ions in a Dual Rf Ion Trap * , 2002 .

[132]  M. Mitchell Waldrop,et al.  The chips are down for Moore’s law , 2016, Nature.

[133]  S. Griffis EDITOR , 1997, Journal of Navigation.

[134]  J. Verduijn Silicon Quantum Electronics , 2012 .

[135]  Norman F. Ramsey,et al.  A Molecular Beam Resonance Method with Separated Oscillating Fields , 1950 .

[136]  Boris B. Blinov,et al.  Quantum Computing with Trapped Ion Hyperfine Qubits , 2004, Quantum Inf. Process..

[137]  R. V. Meter Architecture of a quantum multicomputer optimized for Shor's factoring algorithm , 2006, quant-ph/0607065.

[138]  R. Millikan,et al.  Modern Physics , 1926, Nature.

[139]  A Retzker,et al.  Trapped-Ion Quantum Logic with Global Radiation Fields. , 2016, Physical review letters.

[140]  Daniel Nigg,et al.  A quantum information processor with trapped ions , 2013, 1308.3096.

[141]  C Langer,et al.  Long-lived qubit memory using atomic ions. , 2005, Physical review letters.

[142]  D. Wineland,et al.  A 303-MHz frequency standard based on trapped Be/sup +/ ions , 1991, IEEE Transactions on Instrumentation and Measurement.

[143]  J. R. Claycomb,et al.  Superconducting magnetic shields for SQUID applications , 1999 .

[144]  David P. DiVincenzo,et al.  Fault-tolerant architectures for superconducting qubits , 2009, 0905.4839.