A review on 3D micro-additive manufacturing technologies

New microproducts need the utilization of a diversity of materials and have complicated three-dimensional (3D) microstructures with high aspect ratios. To date, many micromanufacturing processes have been developed but specific class of such processes are applicable for fabrication of functional and true 3D microcomponents/assemblies. The aptitude to process a broad range of materials and the ability to fabricate functional and geometrically complicated 3D microstructures provides the additive manufacturing (AM) processes some profits over traditional methods, such as lithography-based or micromachining approaches investigated widely in the past. In this paper, 3D micro-AM processes have been classified into three main groups, including scalable micro-AM systems, 3D direct writing, and hybrid processes, and the key processes have been reviewed comprehensively. Principle and recent progress of each 3D micro-AM process has been described, and the advantages and disadvantages of each process have been presented.

[1]  Ryan Wicker,et al.  Stereolithography of spatially controlled multi-material bioactive poly(ethylene glycol) scaffolds. , 2010, Acta biomaterialia.

[2]  Pierre E. Dupont,et al.  Metal MEMS tools for beating-heart tissue removal , 2012, 2012 IEEE International Conference on Robotics and Automation.

[3]  John Evans,et al.  Solid Freeforming and Combinatorial Research , 2009 .

[4]  Brian Derby,et al.  Inkjet Printing of Highly Loaded Particulate Suspensions , 2003 .

[5]  Yih-Lin Cheng,et al.  Development of dynamic mask photolithography system , 2005, IEEE International Conference on Mechatronics, 2005. ICM '05..

[6]  Ri Li,et al.  Droplet generation from pulsed micro-jets , 2008 .

[7]  Matthias Dipl Ing Greul,et al.  Fast, functional prototypes via multiphase jet solidification , 1995 .

[8]  B. Chichkov,et al.  Laser-fabricated dielectric optical components for surface plasmon polaritons. , 2006, Optics letters.

[9]  R. Zengerle,et al.  Pneumatic dispensing of nano- to picoliter droplets of liquid metal with the StarJet method for rapid prototyping of metal microstructures , 2011 .

[10]  D.J. Quinn,et al.  A Systematic Approach to Process Selection in MEMS , 2006, Journal of Microelectromechanical Systems.

[11]  Yang Hao,et al.  Low-Profile Directive Millimeter-Wave Antennas Using Free-Formed Three-Dimensional (3-D) Electromagnetic Bandgap Structures , 2009, IEEE Transactions on Antennas and Propagation.

[12]  Pál Ormos,et al.  Complex micromachines produced and driven by light , 2002, CLEO 2002.

[13]  Ian M. Hutchings,et al.  Direct Writing Technology Advances and Developments , 2008 .

[14]  Koichi Suzumori,et al.  Microfabrication of integrated FMAS using stereo lithography , 1994, Proceedings IEEE Micro Electro Mechanical Systems An Investigation of Micro Structures, Sensors, Actuators, Machines and Robotic Systems.

[15]  R. Hull,et al.  Direct Focused Ion Beam Writing of Printheads for Pattern Transfer Utilizing Microcontact Printing , 2000 .

[16]  Jesper Serbin,et al.  Three-dimensional nanostructuring of hybrid materials by two-photon polymerization , 2003, SPIE Optics + Photonics.

[17]  John Evans,et al.  Dose uniformity of fine powders in ultrasonic microfeeding , 2007 .

[18]  Hiroyuki Kawamoto Electronic circuit printing, 3D printing and film formation utilizing electrostatic inkjet technology , 2007 .

[19]  Christopher J. Sutcliffe,et al.  Selective laser melting of high aspect ratio 3D nickel–titanium structures two way trained for MEMS applications , 2008 .

[20]  W. Ehrfeld,et al.  Recent developments in deep x-ray lithography , 1998 .

[21]  H. Exner,et al.  Principles of Laser Micro Sintering , 2007 .

[22]  Wanhua Zhao,et al.  Novel stereolithography system for small size objects , 2006 .

[23]  J. Lewis,et al.  3D Microperiodic Hydrogel Scaffolds for Robust Neuronal Cultures , 2011, Advanced functional materials.

[24]  Yong Chen,et al.  Additive manufacturing based on optimized mask video projection for improved accuracy and resolution , 2012 .

[25]  John Evans,et al.  Extrusion freeforming of ceramics through fine nozzles , 2003 .

[26]  Jake E. Barralet,et al.  3D printing of β-tricalcium phosphate ceramics , 2009 .

[27]  S. Yang,et al.  Mechanical strength of extrusion freeformed calcium phosphate filaments , 2010, Journal of materials science. Materials in medicine.

[28]  Christian Vogt,et al.  Rapid prototyping of small size objects , 2000 .

[29]  B. Chichkov,et al.  Two photon induced polymerization of organic-inorganic hybrid biomaterials for microstructured medical devices. , 2006, Acta biomaterialia.

[30]  Hugo Thienpont,et al.  Free-space micro-optical modules: the missing link for photonic interconnects to sillicon chips , 2001 .

[31]  David L Kaplan,et al.  Direct‐Write Assembly of 3D Silk/Hydroxyapatite Scaffolds for Bone Co‐Cultures , 2012, Advanced healthcare materials.

[32]  Hubert Lorenz,et al.  3D microfabrication by combining microstereolithography and thick resist UV lithography , 1999 .

[33]  P. Renaud,et al.  Microfabrication of ceramic components by microstereolithography , 2004 .

[34]  Mariusz Twardowski,et al.  Sol‐Gel Inks for Direct‐Write Assembly of Functional Oxides , 2007 .

[35]  Robby Ebert,et al.  Laser Micro Sintering – a Versatile Instrument for the Generation of Microparts , 2007 .

[36]  Shinji Matsui,et al.  Focused-ion-beam deposition for 3-D nanostructure fabrication , 2007 .

[37]  Thierry Chartier,et al.  3D fine scale ceramic components formed by ink-jet prototyping process , 2005 .

[38]  Peter Dubruel,et al.  A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. , 2012, Biomaterials.

[39]  F. Foulon,et al.  Argon-ion laser direct-write Al deposition from trialkylamine alane precursors , 1993 .

[40]  Joel W. Barlow,et al.  Selective laser sintering of alumina with polymer binders , 1995 .

[41]  H. Haferkamp,et al.  Combination of Yb:YAG-disc laser and roll-based powder deposition for the micro-laser sintering , 2004 .

[42]  Yongnian Yan,et al.  Fabrication of porous poly(l-lactic acid) scaffolds for bone tissue engineering via precise extrusion , 2001 .

[43]  G. Whitesides,et al.  Soft Lithography. , 1998, Angewandte Chemie.

[44]  P. Cousseau,et al.  3D micromixers-downscaling large scale industrial static mixers , 2001, Technical Digest. MEMS 2001. 14th IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.01CH37090).

[45]  M. J. Edirisinghe,et al.  Solid freeform fabrication of ceramics , 2003 .

[46]  S. Bhatia,et al.  Three-Dimensional Photopatterning of Hydrogels Containing Living Cells , 2002 .

[47]  A.C.W. Lau,et al.  Precision extruding deposition and characterization of cellular poly‐ε‐caprolactone tissue scaffolds , 2004 .

[48]  Martin Wegener,et al.  3D Bi‐chiral Photonic Crystals: Three‐Dimensional Bi‐Chiral Photonic Crystals (Adv. Mater. 46/2009) , 2009 .

[49]  Y. Hao,et al.  Fabrication of Millimeter‐Wave Electromagnetic Bandgap Crystals Using Microwave Dielectric Powders , 2009 .

[50]  M. Boman,et al.  Freeform fabrication of functional microsolenoids, electromagnets and helical springs using high-pressure laser chemical vapor deposition , 1999, Technical Digest. IEEE International MEMS 99 Conference. Twelfth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.99CH36291).

[51]  Eduardo Saiz,et al.  Mechanical properties of calcium phosphate scaffolds fabricated by robocasting. , 2008, Journal of biomedical materials research. Part A.

[52]  Hongseok Choi,et al.  Digital Micromirror Device Based Microstereolithography for Micro Structures of Transparent Photopolymer and Nanocomposites , 2003 .

[53]  Takayuki Hoshino,et al.  Cell wall cutting tool and nano-net fabrication by FIB-CVD for subcellular operations and analysis , 2006 .

[54]  H. Exner,et al.  Industrial laser micro sintering , 2004 .

[55]  J. C. Morgan,et al.  Focused ion beam mask repair , 1998 .

[56]  Ekkard Brinksmeier,et al.  Machining of Precision Parts and Microstructures , 2002 .

[57]  Robby Ebert,et al.  Industrial freeform generation of microtools by laser micro sintering , 2005 .

[58]  M. Wegener,et al.  Waveguides in Three-dimensional Photonic-bandgap Materials by Direct Laser Writing and Silicon Double Inversion , 2010 .

[59]  Han Tong Loh,et al.  Micro-rapid-prototyping via multi-layered photo-lithography , 2006 .

[60]  John Evans,et al.  Metering and dispensing of powder; the quest for new solid freeforming techniques , 2007 .

[61]  K. Ikuta,et al.  Development of free-surface microstereolithography with ultra-high resolution to fabricate hybrid 3-D microdevices , 2005, IEEE International Symposium on Micro-NanoMechatronics and Human Science, 2005.

[62]  Hiroaki Misawa,et al.  Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin , 1999 .

[63]  Robert F. Shepherd,et al.  Direct‐Write Assembly of 3D Hydrogel Scaffolds for Guided Cell Growth , 2009 .

[64]  Allan J. Lightman,et al.  Direct fabrication of ceramics, CMCs by rapid prototyping , 1998 .

[65]  R. Ascherl,et al.  Rapid Prototyping , 1997, IEEE Robotics & Automation Magazine.

[66]  A. Ahluwalia,et al.  Microfabricated fractal branching networks. , 2004, Journal of biomedical materials research. Part A.

[67]  Robby Ebert,et al.  Process assembly for μm-scale SLS, reaction sintering, and CVD , 2003, International Symposium on Laser Precision Microfabrication.

[68]  K. Ikuta,et al.  Fluid drive chips containing multiple pumps and switching valves for Biochemical IC Family , 2000, Proceedings IEEE Thirteenth Annual International Conference on Micro Electro Mechanical Systems (Cat. No.00CH36308).

[69]  J. Lewis,et al.  Concentrated hydroxyapatite inks for direct-write assembly of 3-D periodic scaffolds. , 2005, Biomaterials.

[70]  A Bertsch,et al.  Static micromixers based on large-scale industrial mixer geometry. , 2001, Lab on a chip.

[71]  K. Ikuta,et al.  BIOCHEMICAL IC CHIP FOR PRETREATMENT IN BIOCHEMICAL EXPERIMENTS - Micro ultrasonic homogenizer chip made by hybrid microstereolithography - , 2002 .

[72]  C. Grigoropoulos,et al.  All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles , 2007 .

[73]  P. Dario,et al.  A piezoelectric-driven stereolithography-fabricated micropump , 1995 .

[74]  O. Lehmann,et al.  Three-dimensional laser direct writing of electrically conducting and isolating microstructures , 1994 .

[75]  Shoufeng Yang,et al.  Sintering behaviour of calcium phosphate filaments for use as hard tissue scaffolds , 2008 .

[76]  Robert Puers,et al.  A review of focused ion beam applications in microsystem technology , 2001 .

[77]  Koji Ikuta,et al.  Submicron manipulation tools driven by light in a liquid , 2003 .

[78]  Carmelo De Maria,et al.  The PAM2 system: a multilevel approach for fabrication of complex three‐dimensional microstructures , 2012 .

[79]  N. Nakajima,et al.  Architecture combination by micro photoforming process , 1994, Proceedings IEEE Micro Electro Mechanical Systems An Investigation of Micro Structures, Sensors, Actuators, Machines and Robotic Systems.

[80]  Rainer Telle,et al.  Direct inkjet printing of Si3N4: Characterization of ink, green bodies and microstructure , 2008 .

[81]  Yang Hao,et al.  Solvent-based paste extrusion solid freeforming , 2010 .

[82]  M. Madou Fundamentals of microfabrication : the science of miniaturization , 2002 .

[83]  Christophe Provin,et al.  Three‐Dimensional Ceramic Microcomponents Made Using Microstereolithography , 2003 .

[84]  Andong Xia,et al.  Log-pile photonic crystal fabricated by two-photon photopolymerization , 2005 .

[85]  Giovanni Vozzi,et al.  Characterization of tissue-engineered scaffolds microfabricated with PAM. , 2006, Tissue engineering.

[86]  P. McNally,et al.  A comparative study of Pd/Sn/Au, Au/Ge/Au/Ni/Au, Au-Ge/Ni and Ni/Au-Ge/Ni ohmic contacts to n-GaAs , 1998 .

[87]  Jae-Woo Joung,et al.  Direct synthesis and inkjetting of silver nanocrystals toward printed electronics , 2006 .

[88]  M Gu,et al.  Multiple higher-order stop gaps in infrared polymer photonic crystals. , 2003, Physical review letters.

[89]  S N Jayasinghe,et al.  Bio-electrosprays: the development of a promising tool for regenerative and therapeutic medicine. , 2007, Biotechnology journal.

[90]  A. Ahluwalia,et al.  Biomimicry of PAM Microfabricated Hydrogel Scaffolds , 2008 .

[91]  Yang Hao,et al.  Extrusion freeforming of millimeter wave electromagnetic bandgap (EBG) structures , 2009 .

[92]  Uri Frodis,et al.  Microscale metal additive manufacturing of multi‐component medical devices , 2010 .

[93]  Fumiki Tanaka,et al.  Reaction heat effects on initial linear shrinkage and deformation in stereolithography , 1999 .

[94]  O. Dufaud,et al.  Oxygen diffusion in ceramic suspensions for stereolithography , 2003 .

[95]  Wenbin Cao,et al.  Freeform fabrication of aluminum parts by direct deposition of molten aluminum , 2006 .

[96]  Jiming Zhou,et al.  Research on accurate droplet generation for micro-droplet deposition manufacture , 2010 .

[97]  M. Wegener,et al.  Two‐Component Polymer Scaffolds for Controlled Three‐Dimensional Cell Culture , 2011, Advanced materials.

[98]  N. Amini,et al.  Novel methods to fabricate macroporous 3D carbon scaffolds and ordered surface mesopores on carbon filaments , 2012, Journal of Porous Materials.

[99]  C. Jiang,et al.  Numerical Analysis of a Mask Type Stereolithography Process Using a Dynamic Finite-Element Method , 2003 .

[100]  Yang Hao,et al.  Narrow-beam azimuthally omni-directional millimetre-wave antenna using freeformed cylindrical woodpile cavity , 2010 .

[101]  P Birch,et al.  UV Microstereolithography System that uses Spatial Light Modulator Technology. , 1998, Applied optics.

[102]  D. M. Tanner,et al.  Electrical and chemical characterization of FIB-deposited insulators , 1997 .

[103]  D. Hutmacher,et al.  Scaffold development using 3D printing with a starch-based polymer , 2002 .

[104]  K. Edinger Focused Ion Beams for Direct Writing , 2002 .

[105]  Robert Liska,et al.  Vinyl esters: Low cytotoxicity monomers for the fabrication of biocompatible 3D scaffolds by lithography based additive manufacturing , 2009 .

[106]  Yang Hao,et al.  Fine lattice structures fabricated by extrusion freeforming: Process variables , 2009 .

[107]  Xiang Zhang,et al.  Micro-stereolithography for MEMS , 1998 .

[108]  David L. Kaplan,et al.  Biocompatible Silk Printed Optical Waveguides , 2009 .

[109]  Yang Hao,et al.  Directive millimetre-wave antenna based on freeformed woodpile EBG structure , 2007 .

[110]  David J. Nagel Technologies for Micrometer and Nanometer Pattern and Material Transfer , 2002 .

[111]  John W. Priest,et al.  Liquid Metal Jetting for Printing Metal Parts , 2008 .

[112]  Cheng Sun,et al.  Micro-stereolithography of polymeric and ceramic microstructures , 1999 .

[113]  R. Landers,et al.  Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering. , 2002, Biomaterials.

[114]  J. Andre,et al.  Industrial photochemistry XXIV. Relations between light flux and polymerized depth in laser stereophotolithography , 1997 .

[115]  R. Pogue,et al.  Novel Liquid Crystal Resins for Stereolithography: Mechanical and Physical Properties , 1997 .

[116]  Takahisa Masuzawa,et al.  State of the Art of Micromachining , 2000 .

[117]  R. J. Cook,et al.  Dissolution characteristics of extrusion freeformed hydroxyapatite–tricalcium phosphate scaffolds , 2008, Journal of materials science. Materials in medicine.

[118]  H. Exner,et al.  PROCESSING OF SILICON CARBIDE BY LASER MICRO SINTERING , 2006 .

[119]  M. Wegener,et al.  Rhombicuboctahedral Three‐Dimensional Photonic Quasicrystals , 2010, Advanced materials.

[120]  E.R. Brown,et al.  A compact 30 GHz low loss balanced hybrid coupler fabricated using micromachined integrated coax , 2004, Proceedings. 2004 IEEE Radio and Wireless Conference (IEEE Cat. No.04TH8746).

[121]  Qingbin Liu,et al.  High precision solder droplet printing technology and the state-of-the-art , 2001 .

[122]  David W. Rosen,et al.  Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing , 2009 .

[123]  S. Monneret,et al.  Microfabrication of freedom and articulated alumina-based components , 2002 .

[124]  Nicholas X. Fang,et al.  Projection micro-stereolithography using digital micro-mirror dynamic mask , 2005 .

[125]  Shoufeng Yang,et al.  Fine ceramic lattices prepared by extrusion freeforming. , 2006, Journal of biomedical materials research. Part B, Applied biomaterials.

[126]  Y. Qin,et al.  Micro-manufacturing: research, technology outcomes and development issues , 2010 .

[127]  Kazuhiro Kanda,et al.  Three-dimensional rotor fabrication by focused-ion-beam chemical-vapor-deposition , 2006 .

[128]  Duc Truong Pham,et al.  Some recent advances in multi-material micro- and nano-manufacturing , 2010 .

[129]  R. Zengerle,et al.  RApid prototyping of 3D microstructures by direct printing of liquid metal at temperatures up to 500°C using the starjet technology , 2011, 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference.

[130]  A Tirella,et al.  A phase diagram for microfabrication of geometrically controlled hydrogel scaffolds , 2009, Biofabrication.

[131]  Fan-Gang Tseng,et al.  EFAB: Batch Production of Functional, Fully-Dense Metal Parts with Micron-Scale Features , 1998 .

[132]  Dong-Woo Cho,et al.  Development of 3D PPF/DEF scaffolds using micro-stereolithography and surface modification , 2009, Journal of materials science. Materials in medicine.

[133]  Peter J. Hesketh,et al.  Stereolithography on silicon for microfluidics and microsensor packaging , 2003 .

[134]  Yong‐Lai Zhang,et al.  Designable 3D nanofabrication by femtosecond laser direct writing , 2010 .

[135]  Rafiq Noorani,et al.  Rapid prototyping : principles and applications , 2006 .

[136]  Paolo Dario,et al.  Modelling of micropumps using unimorph piezoelectric actuator and ball valves , 2000 .

[137]  Martin Wegener,et al.  Three‐Dimensional Bi‐Chiral Photonic Crystals , 2009 .

[138]  Linjie Li,et al.  Selective functionalization of 3-D polymer microstructures. , 2006, Journal of the American Chemical Society.

[139]  K. Ikuta,et al.  Real three dimensional micro fabrication using stereo lithography and metal molding , 1993, [1993] Proceedings IEEE Micro Electro Mechanical Systems.

[140]  R. Liska,et al.  Gelatin‐based photopolymers for bone replacement materials , 2009 .

[141]  R. T. Hill,et al.  Microfabrication of three-dimensional bioelectronic architectures. , 2005, Journal of the American Chemical Society.

[142]  Paulo Jorge Da Silva bartolo,et al.  Stereolithography: Materials, Processes and Applications , 2011 .

[143]  Wenhao Huang,et al.  Micro lens fabrication by means of femtosecond two photon photopolymerization. , 2006, Optics express.

[144]  M. Wegener,et al.  Direct laser writing of three-dimensional photonic-crystal templates for telecommunications , 2004, Nature materials.

[145]  Amit Bandyopadhyay,et al.  Development of controlled porosity polymer-ceramic composite scaffolds via fused deposition modeling , 2003 .

[146]  Saulius Juodkazis,et al.  Fabrication and properties of metalo-dielectric photonic crystal structures for infrared spectral region. , 2007, Optics express.

[147]  P. Bártolo,et al.  Additive manufacturing of tissues and organs , 2012 .

[148]  E. Kapon,et al.  Focused electron beam induced deposition of gold and rhodium , 2000 .

[149]  Saulius Juodkazis,et al.  Three‐Dimensional Spiral‐Architecture Photonic Crystals Obtained By Direct Laser Writing , 2005 .

[150]  I. Zein,et al.  Fused deposition modeling of novel scaffold architectures for tissue engineering applications. , 2002, Biomaterials.

[151]  R. Chartoff,et al.  Thermal-expansion and fracture toughness properties of parts made from liquid crystal stereolithography resins , 1999 .

[152]  Ryan A. Koppes,et al.  Laser direct writing of combinatorial libraries of idealized cellular constructs : Biomedical applications , 2009 .

[153]  S. Zissi,et al.  Stereolithography and microtechniques , 1996 .

[154]  J. Y. Jézéquel,et al.  Study of the spatial resolution of a new 3D microfabrication process: the microstereophotolithography using a dynamic mask-generator technique , 1997 .

[155]  R. Hagedorn,et al.  Laser-direct-write creation of three-dimensional OREST microcages for contact-free trapping, handling and transfer of small polarizable neutral objects in solution , 2005 .

[156]  Joseph Cesarano,et al.  A Review of Robocasting Technology , 1998 .

[157]  Pierre E. Dupont,et al.  Metal MEMS tools for beating-heart tissue approximation , 2011, 2011 IEEE International Conference on Robotics and Automation.

[158]  Ian W. Hunter,et al.  Three-dimensional microfabrication by localized electrochemical deposition , 1996 .

[159]  Seth R. Marder,et al.  Chemically Amplified Positive Resists for Two‐Photon Three‐Dimensional Microfabrication , 2003 .

[160]  Satoshi Kawata,et al.  Finer features for functional microdevices , 2001, Nature.

[161]  J. Ye,et al.  Real three-dimensional microstructures fabricated by photopolymerization of resins through two-photon absorption. , 2000, Optics letters.

[162]  Dirk J. Broer,et al.  In-situ photopolymerization of oriented liquid-crystalline acrylates , 1990 .

[163]  M. Gad-el-Hak The MEMS Handbook , 2001 .

[164]  You-Min Huang,et al.  Computer supported force analysis and layer imagine for masked rapid prototyping system , 2001, Proceedings of the Sixth International Conference on Computer Supported Cooperative Work in Design (IEEE Cat. No.01EX472).

[165]  M. Wanke,et al.  Laser Rapid Prototyping of Photonic Band-Gap Microstructures , 1997, Science.

[166]  Satoru Shoji,et al.  Photofabrication of wood-pile three-dimensional photonic crystals using four-beam laser interference , 2003 .

[167]  D. Broer,et al.  INSITU PHOTOPOLYMERIZATION OF ORIENTED LIQUID-CRYSTALLINE ACRYLATES .5. INFLUENCE OF THE ALKYLENE SPACER ON THE PROPERTIES OF THE MESOGENIC MONOMERS AND THE FORMATION AND PROPERTIES OF ORIENTED POLYMER NETWORKS , 1991 .

[168]  Costas P. Grigoropoulos,et al.  Metal nanoparticle direct inkjet printing for low-temperature 3D micro metal structure fabrication , 2010 .

[169]  Harris L. Marcus,et al.  Using SALDVI and SALD with multi-material structures , 1998 .

[170]  H. Seitz,et al.  Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering. , 2005, Journal of biomedical materials research. Part B, Applied biomaterials.

[171]  Dong-Woo Cho,et al.  Development of micro-stereolithography technology using metal powder , 2006 .

[172]  K. Lu,et al.  3DP process for fine mesh structure printing , 2008 .

[173]  Mohsen A. Jafari,et al.  A novel system for fused deposition of advanced multiple ceramics , 2000 .

[174]  Satoru Shoji,et al.  Photofabrication of a photonic crystal using interference of a UV laser , 1999, Other Conferences.

[175]  Peter Fratzl,et al.  Fabrication and moulding of cellular materials by rapid prototyping , 2004 .

[176]  Takashi Yamanaka,et al.  Generation of three-dimensional micro structure using metal jet , 2000 .

[177]  Takayuki Hoshino,et al.  Nanomanipulator and actuator fabrication on glass capillary by focused-ion-beam-chemical vapor deposition , 2004 .

[178]  P. Renaud,et al.  Combining microstereolithography and thick resist UV lithography for 3D microfabrication , 1998, Proceedings MEMS 98. IEEE. Eleventh Annual International Workshop on Micro Electro Mechanical Systems. An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems (Cat. No.98CH36176.

[179]  S. Mihailov,et al.  Fabrication of refractive microlens arrays by excimer laser ablation of amorphous Teflon. , 1993, Applied optics.

[180]  Yang Hao,et al.  Rapid prototyping of ceramic millimeterwave metamaterials: Simulations and experiments , 2007 .

[181]  F. Melchels,et al.  A review on stereolithography and its applications in biomedical engineering. , 2010, Biomaterials.

[182]  Paulo Jorge Da Silva bartolo,et al.  Metal filled resin for stereolithography metal part , 2008 .

[183]  T. Nakamoto,et al.  Consideration on the producing of high aspect ratio micro parts using UV sensitive photopolymer , 1996, MHS'96 Proceedings of the Seventh International Symposium on Micro Machine and Human Science.

[184]  Richard J. Young,et al.  Focused ion beam insulator deposition , 1995 .

[185]  V. Varadan,et al.  Microstereolithography and other Fabrication Techniques for 3D MEMS , 2001 .

[186]  Yi Qin,et al.  Micro-Manufacturing Engineering and Technology , 2010 .

[187]  J. Neumann,et al.  Direct laser writing of surface reliefs in dry, self-developing photopolymer films. , 1999, Applied optics.

[188]  Dong-Woo Cho,et al.  A barrier embedded Kenics micromixer , 2004 .

[189]  Ioannis Ieropoulos,et al.  Digital fabrication of a novel bio-actuator for bio-robotic art and design , 2011, NIP & Digital Fabrication Conference.

[190]  S. Zissi,et al.  Microstereophotolithography using a liquid crystal display as dynamic mask-generator , 1997 .

[191]  In-Baek Park,et al.  Three-dimensional microstructure using partitioned cross-sections in projection microstereolithography , 2010 .

[192]  Brian Derby,et al.  Freeform fabrication by controlled droplet deposition of powder filled melts , 2002 .

[193]  J A Barron,et al.  Biological Laser Printing: A Novel Technique for Creating Heterogeneous 3-dimensional Cell Patterns , 2004, Biomedical microdevices.

[194]  Vladimir Mironov,et al.  Bioprinting living structures , 2007 .

[195]  J. Lewis,et al.  Conformal Printing of Electrically Small Antennas on Three‐Dimensional Surfaces , 2011, Advanced materials.

[196]  Dong-Yol Yang,et al.  Advances in 3D nano/microfabrication using two-photon initiated polymerization , 2008 .

[197]  Satoshi Kawata,et al.  Three-dimensional fabrication of metallic nanostructures over large areas by two-photon polymerization. , 2006, Optics express.

[198]  Serge Monneret,et al.  Microstereolithography using a dynamic mask generator and a noncoherent visible light source , 1999, Design, Test, Integration, and Packaging of MEMS/MOEMS.

[199]  P. Bártolo,et al.  Cure and Rheological Analysis of Reinforced Resins for Stereolithography , 2008 .

[200]  Dong-Yol Yang,et al.  Selective ablation-assisted two-photon stereolithography for effective nano- and microfabrication , 2011 .

[201]  Robby Ebert,et al.  Selective laser micro sintering with a novel process , 2003, International Symposium on Laser Precision Microfabrication.

[202]  Giovanni Vozzi,et al.  Microfabricated PLGA scaffolds: a comparative study for application to tissue engineering , 2002 .

[203]  Dong-Yol Yang,et al.  Fabrication of a bunch of sub-30-nm nanofibers inside microchannels using photopolymerization via a long exposure technique , 2006 .

[204]  John Evans,et al.  A dry powder jet printer for dispensing and combinatorial research , 2004 .

[205]  J Malda,et al.  Bioprinting of hybrid tissue constructs with tailorable mechanical properties , 2011, Biofabrication.

[206]  Han Tong Loh,et al.  Fabrication of 3D chitosan–hydroxyapatite scaffolds using a robotic dispensing system , 2002 .

[207]  Thierry Chartier,et al.  Ink-jet printing of ceramic micro-pillar arrays , 2009 .

[208]  Dong-Woo Cho,et al.  Fabrication and characteristic analysis of a poly(propylene fumarate) scaffold using micro-stereolithography technology. , 2008, Journal of biomedical materials research. Part B, Applied biomaterials.

[209]  C. V. van Blitterswijk,et al.  Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique. , 2004, Biomaterials.

[210]  Elastomeric carbon nanotube circuits for local strain sensing , 2006, cond-mat/0606463.

[211]  Koji Ikuta,et al.  Multi-directional Micro Switching Value Chip with Rotary Mechanism , 2008 .

[212]  J. Giérak Focused Ion Beam Direct‐Writing , 2013 .

[213]  F. Tseng,et al.  EFAB: rapid, low-cost desktop micromachining of high aspect ratio true 3-D MEMS , 1999, Technical Digest. IEEE International MEMS 99 Conference. Twelfth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.99CH36291).

[214]  Seok-Hee Lee,et al.  Cross-section segmentation for improving the shape accuracy of microstructure array in projection microstereolithography , 2010 .

[215]  J. Cesarano,et al.  Directed colloidal assembly of 3D periodic structures , 2002 .

[216]  Rolf Mülhaupt,et al.  Desktop manufacturing of complex objects, prototypes and biomedical scaffolds by means of computer‐assisted design combined with computer‐guided 3D plotting of polymers and reactive oligomers , 2000 .

[217]  Chad E. Duty,et al.  Laser chemical vapour deposition: materials, modelling, and process control , 2001 .

[218]  Wim E Hennink,et al.  The effect of photopolymerization on stem cells embedded in hydrogels. , 2009, Biomaterials.

[219]  Yang Hao,et al.  Fabrication of electromagnetic crystals by extrusion freeforming , 2008 .

[220]  Takayuki Hoshino,et al.  Performance of nanomanipulator fabricated on glass capillary by focused-ion-beam chemical vapor deposition , 2005 .

[221]  Hae-Won Kim,et al.  Robocasting chitosan/nanobioactive glass dual-pore structured scaffolds for bone engineering , 2012 .

[222]  Wei Sun,et al.  Multi‐nozzle deposition for construction of 3D biopolymer tissue scaffolds , 2005 .

[223]  Sjoerd Haasl,et al.  Layer Manufacturing as a Generic Tool for Microsystem Integration , 2007 .

[224]  Jae-Won Choi,et al.  Fabrication of 3-Dimensional Microstructures Using Dynamic Image Projection , 2007 .

[225]  Li Hejun,et al.  Dominant Factors of Metal Jet Breakup in Micro Droplet Deposition Manufacturing Technique , 2010 .

[226]  Michele Lanzetta,et al.  Improved surface finish in 3D printing using bimodal powder distribution , 2003 .

[227]  Stefan Simeonov Dimov,et al.  A roadmapping study in Multi-Material Micro Manufacture , 2006 .

[228]  P. Calvert,et al.  Liquid Metal Jetting for Printing Metal Parts , 1997 .

[229]  Yang Hao,et al.  Directive millimetrewave antennas using freeformed ceramic metamaterials in planar and cylindrical forms , 2008, 2008 IEEE Antennas and Propagation Society International Symposium.

[230]  B. Tay,et al.  Investigation of some phenomena occurring during continuous ink-jet printing of ceramics , 2001 .

[231]  Koji Ikuta,et al.  The optimized SMA micro pump chip applicable to liquids and gases , 2001 .

[232]  Vivek Subramanian,et al.  Progress Toward Development of All-Printed RFID Tags: Materials, Processes, and Devices , 2005, Proceedings of the IEEE.

[233]  Philippe Renaud,et al.  Microstereolithography: a new process to build complex 3D objects , 1999, Design, Test, Integration, and Packaging of MEMS/MOEMS.

[234]  Satoshi Kawata,et al.  Two-photon-absorbed near-infrared photopolymerization for three-dimensional microfabrication , 1998 .

[235]  S. Hsu,et al.  Evaluation of chondrocyte growth in the highly porous scaffolds made by fused deposition manufacturing (FDM) filled with type II collagen , 2009, Biomedical microdevices.

[236]  Q Liu,et al.  On precision droplet-based net-form manufacturing technology , 2001 .

[237]  E. D. Rekow,et al.  In vivo bone response to 3D periodic hydroxyapatite scaffolds assembled by direct ink writing. , 2007, Journal of biomedical materials research. Part A.

[238]  Alain Fort,et al.  One-step waveguide and optical circuit writing in photopolymerizable materials processed by two-photon absorption , 2005 .

[239]  N. Nakajima,et al.  Photoforming applied to fine machining , 1993, [1993] Proceedings IEEE Micro Electro Mechanical Systems.

[240]  M Gu,et al.  Use of two-photon excitation for erasable-rewritable three-dimensional bit optical data storage in a photorefractive polymer. , 1999, Optics letters.

[241]  Giovanni Vozzi,et al.  Microfabrication for tissue engineering : rethinking the cells-on-a scaffold approach , 2007 .

[242]  Adam L. Cohen,et al.  Monolithic 3-D Microfabrication of Mechanisms With Multiple Independently-Moving Parts , 2005 .

[243]  Boris N. Chichkov,et al.  Three-Dimensional Cell Growth on Structures Fabricated from ORMOCER® by Two-Photon Polymerization Technique , 2007, Journal of biomaterials applications.

[244]  K. Anseth,et al.  Photopolymerization of multilaminated poly(HEMA) hydrogels for controlled release. , 1999, Journal of controlled release : official journal of the Controlled Release Society.

[245]  Yongnian Yan,et al.  Fabrication of porous scaffolds for bone tissue engineering via low-temperature deposition , 2002 .

[246]  Shoufeng Yang,et al.  Rapid prototyping of ceramic lattices for hard tissue scaffolds , 2008 .

[247]  H. Fischer,et al.  Direct Inkjet Printing of Dental Prostheses Made of Zirconia , 2009, Journal of dental research.

[248]  Kurt Busch,et al.  Three‐Dimensional Nanostructures for Photonics , 2010 .

[249]  Sung-hoon Ahn,et al.  Review: Developments in micro/nanoscale fabrication by focused ion beams , 2012 .

[250]  S. Monneret,et al.  Complex ceramic-polymer composite microparts made by microstereolithography , 2002 .

[251]  M. Wegener,et al.  3D-2D-3D photonic crystal heterostructures fabricated by direct laser writing. , 2006, Optics letters.

[252]  Seth R. Marder,et al.  Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication , 1999, Nature.

[253]  Robby Ebert,et al.  Laser micro sintering: A new method to generate metal and ceramic parts of high resolution with sub-micrometer powder , 2008 .

[254]  J. Crivello The discovery and development of onium salt cationic photoinitiators , 1999 .

[255]  Min Gu,et al.  Complex-shaped three-dimensional microstructures and photonic crystals generated in a polysiloxane polymer by two-photon microstereolithography , 2004 .

[256]  Klaus Edinger,et al.  Study of precursor gases for focused ion beam insulator deposition , 1998 .