Powering the next billion devices with wi-fi

We present the first power over Wi-Fi system that delivers power to low-power sensors and devices and works with existing Wi-Fi chipsets. Specifically, we show that a ubiquitous part of wireless communication infrastructure, the Wi-Fi router, can provide far field wireless power without significantly compromising the network's communication performance. Building on our design, we prototype battery-free temperature and camera sensors that we power with Wi-Fi at ranges of 20 and 17 feet respectively. We also demonstrate the ability to wirelessly trickle-charge nickel---metal hydride and lithium-ion coin-cell batteries at distances of up to 28 feet. We deploy our system in six homes in a metropolitan area and show that it can successfully deliver power via Wi-Fi under real-world network conditions without significantly degrading network performance.

[1]  Joshua R. Smith,et al.  Powering the next Billion devices with wi-fi , 2017, Commun. ACM.

[2]  Yorgos Palaskas,et al.  Wi-Fi RF energy harvesting for battery-free wearable radio platforms , 2015, 2015 IEEE International Conference on RFID (RFID).

[3]  Matthew S. Reynolds,et al.  Ultra-low power 2.4GHz RF energy harvesting and storage system with −25dBm sensitivity , 2015, 2015 IEEE International Conference on RFID (RFID).

[4]  Joshua R. Smith,et al.  WISPCam: A battery-free RFID camera , 2015, 2015 IEEE International Conference on RFID (RFID).

[5]  Joshua R. Smith,et al.  Wi-fi backscatter , 2014, SIGCOMM 2015.

[6]  Matthew S. Reynolds,et al.  A 2.4GHz ambient RF energy harvesting system with −20dBm minimum input power and NiMH battery storage , 2014, 2014 IEEE RFID Technology and Applications Conference (RFID-TA).

[7]  Dina Katabi,et al.  Magnetic MIMO: how to charge your phone in your pocket , 2014, MobiCom.

[8]  Gregory D. Durgin,et al.  Harvesting Wireless Power: Survey of Energy-Harvester Conversion Efficiency in Far-Field, Wireless Power Transfer Systems , 2014, IEEE Microwave Magazine.

[9]  Matthew S. Reynolds,et al.  Waveform-aware ambient RF energy harvesting , 2014, 2014 IEEE International Conference on RFID (IEEE RFID).

[10]  Joshua R. Smith,et al.  Sifting through the airwaves: Efficient and scalable multiband RF harvesting , 2014, 2014 IEEE International Conference on RFID (IEEE RFID).

[11]  Sachin Katti,et al.  Full Duplex MIMO Radios , 2014, NSDI.

[12]  Shyamnath Gollakota,et al.  Bringing Gesture Recognition to All Devices , 2014, NSDI.

[13]  Steven A. Cummer,et al.  A microwave metamaterial with integrated power harvesting functionality , 2013 .

[14]  Yoshihiro Kawahara,et al.  Power harvesting from microwave oven electromagnetic leakage , 2013, UbiComp.

[15]  David Wetherall,et al.  Ambient backscatter: wireless communication out of thin air , 2013, SIGCOMM.

[16]  J. R. Smith,et al.  Hybrid analog-digital backscatter: A new approach for battery-free sensing , 2013, 2013 IEEE International Conference on RFID (RFID).

[17]  Ambient RF Energy Harvesting Sensor Device With Capacitor-Leakage-Aware Duty Cycle Control , 2013, IEEE Sensors Journal.

[18]  Grant Covic,et al.  Inductive Power Transfer , 2013, Proceedings of the IEEE.

[19]  Yi Zhao,et al.  A wireless sensing platform utilizing ambient RF energy , 2013, 2013 IEEE 13th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems.

[20]  Hoseon Lee,et al.  SenSprout: inkjet-printed soil moisture and leaf wetness sensor , 2012, UbiComp.

[21]  Chi-Chih Chen,et al.  Design of an efficient ambient WiFi energy harvesting system , 2012 .

[22]  Chi-Chih Chen,et al.  Efficient ambient WiFi energy harvesting technology and its applications , 2012, Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation.

[23]  J. R. Smith,et al.  Optical localization of passive UHF RFID tags with integrated LEDs , 2012, 2012 IEEE International Conference on RFID (RFID).

[24]  Sachin Katti,et al.  Picasso: flexible RF and spectrum slicing , 2012, CCRV.

[25]  Alanson P. Sample,et al.  Powering a Ventricular Assist Device (VAD) With the Free-Range Resonant Electrical Energy Delivery (FREE-D) System , 2012, Proceedings of the IEEE.

[26]  Hiroyuki Arai,et al.  DTV band micropower RF energy-harvesting circuit architecture and performance analysis , 2011, 2011 IEEE International Conference on RFID-Technologies and Applications.

[27]  Dina Katabi,et al.  Secure In-Band Wireless Pairing , 2011, USENIX Security Symposium.

[28]  Reza Mahmoudi,et al.  2.4GHz energy harvesting for wireless sensor network , 2011, 2011 IEEE Topical Conference on Wireless Sensors and Sensor Networks.

[29]  J. Volakis,et al.  Wireless power harvesting with planar rectennas for 2.45 GHz RFIDs , 2010, 2010 URSI International Symposium on Electromagnetic Theory.

[30]  Gregory D. Durgin,et al.  Survey of range improvement of commercial RFID tags with Power Optimized Waveforms , 2010, 2010 IEEE International Conference on RFID (IEEE RFID 2010).

[31]  Apostolos Georgiadis,et al.  Design of a 2.45 GHz rectenna for electromagnetic (EM) energy scavenging , 2010, 2010 IEEE Radio and Wireless Symposium (RWS).

[32]  Jenshan Lin,et al.  Design and Test of a High-Power High-Efficiency Loosely Coupled Planar Wireless Power Transfer System , 2009, IEEE Transactions on Industrial Electronics.

[33]  Gregory D. Durgin,et al.  Power-optimized waveforms for improving the range and reliability of RFID systems , 2009, 2009 IEEE International Conference on RFID.

[34]  Joshua R. Smith,et al.  Experimental results with two wireless power transfer systems , 2009, 2009 IEEE Radio and Wireless Symposium.

[35]  J.A.C. Theeuwes,et al.  Ambient RF Energy Scavenging: GSM and WLAN Power Density Measurements , 2008, 2008 38th European Microwave Conference.

[36]  Alanson P. Sample,et al.  Design of an RFID-Based Battery-Free Programmable Sensing Platform , 2008, IEEE Transactions on Instrumentation and Measurement.

[37]  M. Soljačić,et al.  Wireless Power Transfer via Strongly Coupled Magnetic Resonances , 2007, Science.

[38]  C. Dehollain,et al.  Remotely powered addressable UHF RFID integrated system , 2005, IEEE Journal of Solid-State Circuits.

[39]  R. Zane,et al.  Recycling ambient microwave energy with broad-band rectenna arrays , 2004, IEEE Transactions on Microwave Theory and Techniques.

[40]  R. Fan THEORETICAL LIMITATIONS ON THE BROADBAND MATCHING OF ARBITRARY IMPEDANCES * , 2003 .

[41]  R. Kaul,et al.  Microwave engineering , 1989, IEEE Potentials.

[42]  Nikola Tesla,et al.  My Inventions: The Autobiography of Nikola Tesla , 1919 .