Computing A, log(A) and Related Matrix Functions by Contour Integrals
暂无分享,去创建一个
N. Higham | Nicholas Hale | N. Trefethen | f¡1dz | fdz
[1] B. Baillaud. Sur le calcul numerique des integrales definies , 1886 .
[2] Radakovič. The theory of approximation , 1932 .
[3] George Szekeres,et al. Numerical evaluation of high-dimensional integrals , 1964 .
[4] Leon M. Hall,et al. Special Functions , 1998 .
[5] D. Newman. Rational approximation to | x , 1964 .
[6] Frank Stenger,et al. Integration Formulae Based on the Trapezoidal Formula , 1973 .
[7] Masatake Mori,et al. Quadrature formulas obtained by variable transformation , 1973 .
[8] Masatake Mori,et al. Double Exponential Formulas for Numerical Integration , 1973 .
[9] A. Talbot. The Accurate Numerical Inversion of Laplace Transforms , 1979 .
[10] F. Stenger. Numerical Methods Based on Whittaker Cardinal, or Sinc Functions , 1981 .
[11] L. Trefethen,et al. The Carathéodory–Fejér Method for Real Rational Approximation , 1983 .
[12] Masao Iri,et al. On a certain quadrature formula , 1987 .
[13] F. Stenger. Numerical Methods Based on Sinc and Analytic Functions , 1993 .
[14] A. Laub,et al. The matrix sign function , 1995, IEEE Trans. Autom. Control..
[15] G. Golub,et al. Bounds for the Entries of Matrix Functions with Applications to Preconditioning , 1999 .
[16] Jean-François Richard,et al. Methods of Numerical Integration , 2000 .
[17] Dongwoo Sheen,et al. A parallel method for time-discretization of parabolic problems based on contour integral representation and quadrature , 2000, Math. Comput..
[18] Ivan P. Gavrilyuk,et al. Exponentially Convergent Parallel Discretization Methods for the First Order Evolution Equations , 2001 .
[19] H. V. D. Vorst,et al. Numerical methods for the QCDd overlap operator. I. Sign-function and error bounds , 2002, hep-lat/0202025.
[20] Lloyd N. Trefethen,et al. Schwarz-Christoffel Mapping , 2002 .
[21] V. Thomée,et al. Time discretization of an evolution equation via Laplace transforms , 2004 .
[22] A. Kennedy. Approximation theory for matrices , 2004, hep-lat/0402037.
[23] Philip I. Davies,et al. Computing f (A)b for matrix functions f , 2005 .
[24] M. Mori. Discovery of the Double Exponential Transformation and Its Developments , 2005 .
[25] Tobin A. Driscoll,et al. Algorithm 843: Improvements to the Schwarz-Christoffel toolbox for MATLAB , 2005, TOMS.
[26] Karl-Georg Steffens. The history of approximation theory : from Euler to Bernstein , 2006 .
[27] J. A. C. Weideman,et al. Optimizing Talbot's Contours for the Inversion of the Laplace Transform , 2006, SIAM J. Numer. Anal..
[28] Lloyd N. Trefethen,et al. Parabolic and hyperbolic contours for computing the Bromwich integral , 2007, Math. Comput..
[29] Lloyd N. Trefethen,et al. Computing the Gamma Function Using Contour Integrals and Rational Approximations , 2007, SIAM J. Numer. Anal..
[30] Nicholas J. Higham,et al. Functions of matrices - theory and computation , 2008 .
[31] Nicholas J. Higham,et al. Computing AAlpha, log(A), and Related Matrix Functions by Contour Integrals , 2008, SIAM J. Numer. Anal..