Affine solution sets of sparse polynomial systems
暂无分享,去创建一个
[1] Volker Strassen,et al. Algebraic Complexity Theory , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.
[2] Juan Sabia,et al. Computing isolated roots of sparse polynomial systems in affine space , 2010, Theor. Comput. Sci..
[3] Jacob T. Schwartz,et al. Fast Probabilistic Algorithms for Verification of Polynomial Identities , 1980, J. ACM.
[4] J. Maurice Rojas,et al. A Convex Geometric Approach to Counting the Roots of a Polynomial System , 1994, Theor. Comput. Sci..
[5] Xiaoshen Wang,et al. The BKK root count in Cn , 1996, Math. Comput..
[6] J. Verschelde,et al. Homotopies exploiting Newton polytopes for solving sparse polynomial systems , 1994 .
[7] Bernd Sturmfels,et al. A polyhedral method for solving sparse polynomial systems , 1995 .
[8] D. N. Bernshtein. The number of roots of a system of equations , 1975 .
[9] Joachim von zur Gathen,et al. Modern Computer Algebra , 1998 .
[10] Richard Zippel,et al. Effective polynomial computation , 1993, The Kluwer international series in engineering and computer science.
[11] Bernd Sturmfels,et al. Bernstein’s theorem in affine space , 1997, Discret. Comput. Geom..
[12] Anton Leykin,et al. Numerical algebraic geometry , 2020, Applications of Polynomial Systems.
[13] Xiaoshen Wang,et al. Finding All Isolated Zeros of Polynomial Systems inCnvia Stable Mixed Volumes , 1999, J. Symb. Comput..
[14] Ariel Waissbein,et al. Deformation Techniques for Sparse Systems , 2006, Found. Comput. Math..
[15] Alicia Dickenstein,et al. Counting solutions to binomial complete intersections , 2005, J. Complex..
[16] Bernd Sturmfels,et al. On the Newton Polytope of the Resultant , 1994 .
[17] Askold Khovanskii,et al. Newton polyhedra and toroidal varieties , 1977 .
[18] Patrizia M. Gianni,et al. Gröbner Bases and Primary Decomposition of Polynomial Ideals , 1988, J. Symb. Comput..
[19] Palaiseau Cedex,et al. Computing Parametric Geometric Resolutions , 2001 .
[20] Jan Verschelde,et al. Polyhedral Methods in Numerical Algebraic Geometry , 2008, 0810.2983.
[21] J. M. Rojas. Why Polyhedra Matter in Non-Linear Equation Solving , 2002, math/0212309.
[22] David A. Cox,et al. Using Algebraic Geometry , 1998 .
[23] Charles W. Wampler,et al. Interactions of Classical and Numerical Algebraic Geometry , 2009 .
[24] Bernard Mourrain,et al. A new algorithm for the geometric decomposition of a variety , 1999, ISSAC '99.
[25] Marc Giusti,et al. A Gröbner Free Alternative for Polynomial System Solving , 2001, J. Complex..
[26] Andrew J. Sommese,et al. The numerical solution of systems of polynomials - arising in engineering and science , 2005 .
[27] Joos Heintz,et al. Algorithmes – disons rapides – pour la décomposition d’une variété algébrique en composantes irréductibles et équidimensionnelles , 1991 .
[28] Akiko Takeda,et al. Dynamic Enumeration of All Mixed Cells , 2007, Discret. Comput. Geom..
[29] Grégoire Lecerf,et al. Computing the equidimensional decomposition of an algebraic closed set by means of lifting fibers , 2003, J. Complex..
[30] Ioannis Z. Emiris,et al. How to Count Efficiently all Affine Roots of a Polynomial System , 1999, Discret. Appl. Math..
[31] Michael Clausen,et al. Algebraic complexity theory , 1997, Grundlehren der mathematischen Wissenschaften.
[32] Juan Sabia,et al. Effective equidimensional decomposition of affine varieties , 2002 .
[33] A. G. Kushnirenko,et al. Newton polytopes and the Bezout theorem , 1976 .
[34] J. E. Morais,et al. Straight--Line Programs in Geometric Elimination Theory , 1996, alg-geom/9609005.
[35] Fabrice Rouillier,et al. Solving Zero-Dimensional Systems Through the Rational Univariate Representation , 1999, Applicable Algebra in Engineering, Communication and Computing.
[36] Teresa Krick,et al. Sharp estimates for the arithmetic Nullstellensatz , 1999, math/9911094.
[37] Teresa Krick,et al. The Computational Complexity of the Chow Form , 2002, Found. Comput. Math..