Affine solution sets of sparse polynomial systems

This paper focuses on the equidimensional decomposition of affine varieties defined by sparse polynomial systems. For generic systems with fixed supports, we give combinatorial conditions for the existence of positive dimensional components which characterize the equidimensional decomposition of the associated affine variety. This result is applied to design an equidimensional decomposition algorithm for generic sparse systems. For arbitrary sparse systems of n polynomials in n variables with fixed supports, we obtain an upper bound for the degree of the affine variety defined and we present an algorithm which computes finite sets of points representing its equidimensional components.

[1]  Volker Strassen,et al.  Algebraic Complexity Theory , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[2]  Juan Sabia,et al.  Computing isolated roots of sparse polynomial systems in affine space , 2010, Theor. Comput. Sci..

[3]  Jacob T. Schwartz,et al.  Fast Probabilistic Algorithms for Verification of Polynomial Identities , 1980, J. ACM.

[4]  J. Maurice Rojas,et al.  A Convex Geometric Approach to Counting the Roots of a Polynomial System , 1994, Theor. Comput. Sci..

[5]  Xiaoshen Wang,et al.  The BKK root count in Cn , 1996, Math. Comput..

[6]  J. Verschelde,et al.  Homotopies exploiting Newton polytopes for solving sparse polynomial systems , 1994 .

[7]  Bernd Sturmfels,et al.  A polyhedral method for solving sparse polynomial systems , 1995 .

[8]  D. N. Bernshtein The number of roots of a system of equations , 1975 .

[9]  Joachim von zur Gathen,et al.  Modern Computer Algebra , 1998 .

[10]  Richard Zippel,et al.  Effective polynomial computation , 1993, The Kluwer international series in engineering and computer science.

[11]  Bernd Sturmfels,et al.  Bernstein’s theorem in affine space , 1997, Discret. Comput. Geom..

[12]  Anton Leykin,et al.  Numerical algebraic geometry , 2020, Applications of Polynomial Systems.

[13]  Xiaoshen Wang,et al.  Finding All Isolated Zeros of Polynomial Systems inCnvia Stable Mixed Volumes , 1999, J. Symb. Comput..

[14]  Ariel Waissbein,et al.  Deformation Techniques for Sparse Systems , 2006, Found. Comput. Math..

[15]  Alicia Dickenstein,et al.  Counting solutions to binomial complete intersections , 2005, J. Complex..

[16]  Bernd Sturmfels,et al.  On the Newton Polytope of the Resultant , 1994 .

[17]  Askold Khovanskii,et al.  Newton polyhedra and toroidal varieties , 1977 .

[18]  Patrizia M. Gianni,et al.  Gröbner Bases and Primary Decomposition of Polynomial Ideals , 1988, J. Symb. Comput..

[19]  Palaiseau Cedex,et al.  Computing Parametric Geometric Resolutions , 2001 .

[20]  Jan Verschelde,et al.  Polyhedral Methods in Numerical Algebraic Geometry , 2008, 0810.2983.

[21]  J. M. Rojas Why Polyhedra Matter in Non-Linear Equation Solving , 2002, math/0212309.

[22]  David A. Cox,et al.  Using Algebraic Geometry , 1998 .

[23]  Charles W. Wampler,et al.  Interactions of Classical and Numerical Algebraic Geometry , 2009 .

[24]  Bernard Mourrain,et al.  A new algorithm for the geometric decomposition of a variety , 1999, ISSAC '99.

[25]  Marc Giusti,et al.  A Gröbner Free Alternative for Polynomial System Solving , 2001, J. Complex..

[26]  Andrew J. Sommese,et al.  The numerical solution of systems of polynomials - arising in engineering and science , 2005 .

[27]  Joos Heintz,et al.  Algorithmes – disons rapides – pour la décomposition d’une variété algébrique en composantes irréductibles et équidimensionnelles , 1991 .

[28]  Akiko Takeda,et al.  Dynamic Enumeration of All Mixed Cells , 2007, Discret. Comput. Geom..

[29]  Grégoire Lecerf,et al.  Computing the equidimensional decomposition of an algebraic closed set by means of lifting fibers , 2003, J. Complex..

[30]  Ioannis Z. Emiris,et al.  How to Count Efficiently all Affine Roots of a Polynomial System , 1999, Discret. Appl. Math..

[31]  Michael Clausen,et al.  Algebraic complexity theory , 1997, Grundlehren der mathematischen Wissenschaften.

[32]  Juan Sabia,et al.  Effective equidimensional decomposition of affine varieties , 2002 .

[33]  A. G. Kushnirenko,et al.  Newton polytopes and the Bezout theorem , 1976 .

[34]  J. E. Morais,et al.  Straight--Line Programs in Geometric Elimination Theory , 1996, alg-geom/9609005.

[35]  Fabrice Rouillier,et al.  Solving Zero-Dimensional Systems Through the Rational Univariate Representation , 1999, Applicable Algebra in Engineering, Communication and Computing.

[36]  Teresa Krick,et al.  Sharp estimates for the arithmetic Nullstellensatz , 1999, math/9911094.

[37]  Teresa Krick,et al.  The Computational Complexity of the Chow Form , 2002, Found. Comput. Math..