Palindromic Decompositions with Gaps and Errors

Identifying palindromes in sequences has been an interesting line of research in combinatorics on words and also in computational biology, after the discovery of the relation of palindromes in the DNA sequence with the HIV virus. Efficient algorithms for the factorization of sequences into palindromes and maximal palindromes have been devised in recent years. We extend these studies by allowing gaps in decompositions and errors in palindromes, and also imposing a lower bound to the length of acceptable palindromes.

[1]  Valmir Carneiro Barbosa,et al.  Finding approximate palindromes in strings , 2002, Pattern Recognit..

[2]  Zvi Galil Real-time algorithms for string-matching and palindrome recognition , 1976, STOC '76.

[3]  Zvi Galil,et al.  A Linear-Time On-Line Recognition Algorithm for ``Palstar'' , 1978, JACM.

[4]  Xavier Droubay,et al.  Palindromes in the Fibonacci Word , 1995, Inf. Process. Lett..

[5]  Shunsuke Inenaga,et al.  Computing palindromic factorizations and palindromic covers on-line , 2014 .

[6]  Donald E. Knuth,et al.  Fast Pattern Matching in Strings , 1977, SIAM J. Comput..

[7]  Arseny M. Shur,et al.  Pal k is Linear Recognizable Online , 2015, SOFSEM.

[8]  Costas S. Iliopoulos,et al.  Maximal Palindromic Factorization , 2013, Stringology.

[9]  Panagiotis Charalampopoulos,et al.  Palindromic Decompositions with Gaps and Errors , 2018, Int. J. Found. Comput. Sci..

[10]  Arseny M. Shur,et al.  EERTREE: An efficient data structure for processing palindromes in strings , 2015, Eur. J. Comb..

[11]  Gregory Kucherov,et al.  Searching for gapped palindromes , 2008, Theor. Comput. Sci..

[12]  Anna E. Frid,et al.  On palindromic factorization of words , 2013, Adv. Appl. Math..

[13]  Dan Gusfield,et al.  Algorithms on Strings, Trees, and Sequences - Computer Science and Computational Biology , 1997 .

[14]  Rajesh Prasad,et al.  Searching Gapped Palindromes in DNA Sequences using Dynamic Suffix Array , 2015 .

[15]  Wojciech Rytter,et al.  Jewels of stringology , 2002 .

[16]  Zvi Galil,et al.  Parallel Detection of all Palindromes in a String , 1994, STACS.

[17]  Kuan-Yu Chen,et al.  Finding All Approximate Gapped Palindromes , 2009, ISAAC.

[18]  Juha Kärkkäinen,et al.  A subquadratic algorithm for minimum palindromic factorization , 2014, J. Discrete Algorithms.

[19]  Hideo Bannai,et al.  Finding Gapped Palindromes Online , 2016, IWOCA.

[20]  Giuseppe Pirillo,et al.  Palindromes and Sturmian Words , 1999, Theor. Comput. Sci..

[21]  Zvi Galil,et al.  Finding all periods and initial palindromes of a string in parallel , 1992, Algorithmica.

[22]  Maxime Crochemore,et al.  Algorithms on strings , 2007 .

[23]  Glenn K. Manacher,et al.  A New Linear-Time ``On-Line'' Algorithm for Finding the Smallest Initial Palindrome of a String , 1975, JACM.