Robust Multiview Photometric Stereo Using Planar Mesh Parameterization

We propose a robust uncalibrated multiview photometric stereo method for high quality 3D shape reconstruction. In our method, a coarse initial 3D mesh obtained using a multiview stereo method is projected onto a 2D planar domain using a planar mesh parameterization technique. We describe methods for surface normal estimation that work in the parameterized 2D space that jointly incorporates all geometric and photometric cues from multiple viewpoints. Using an estimated surface normal map, a refined 3D mesh is then recovered by computing an optimal displacement map in the same 2D planar domain. Our method avoids the need of merging view-dependent surface normal maps that is often required in conventional methods. We conduct evaluation on various real-world objects containing surfaces with specular reflections, multiple albedos, and complex topologies in both controlled and uncontrolled settings and demonstrate that accurate 3D meshes with fine geometric details can be recovered by our method.

[1]  Berthold K. P. Horn SHAPE FROM SHADING: A METHOD FOR OBTAINING THE SHAPE OF A SMOOTH OPAQUE OBJECT FROM ONE VIEW , 1970 .

[2]  Robert J. Woodham,et al.  Photometric method for determining surface orientation from multiple images , 1980 .

[3]  H. C. Longuet-Higgins,et al.  A computer algorithm for reconstructing a scene from two projections , 1981, Nature.

[4]  Joseph Y.-T. Leung,et al.  Efficient algorithms for interval graphs and circular-arc graphs , 1982, Networks.

[5]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[6]  Hideki Hayakawa Photometric stereo under a light source with arbitrary motion , 1994 .

[7]  Gabriel Taubin,et al.  A signal processing approach to fair surface design , 1995, SIGGRAPH.

[8]  Sunil Arya,et al.  ANN: library for approximate nearest neighbor searching , 1998 .

[9]  Andrew W. Fitzgibbon,et al.  Automatic 3D Model Construction for Turn-Table Sequences , 1998, SMILE.

[10]  Hugues Hoppe,et al.  New quadric metric for simplifying meshes with appearance attributes , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[11]  Wojciech Matusik,et al.  A data-driven reflectance model , 2003, ACM Trans. Graph..

[12]  Li Zhang,et al.  Shape and motion under varying illumination: unifying structure from motion, photometric stereo, and multiview stereo , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[13]  Hans-Peter Seidel,et al.  Image-based reconstruction of spatial appearance and geometric detail , 2003, TOGS.

[14]  MatusikWojciech,et al.  A data-driven reflectance model , 2003 .

[15]  Kun Zhou,et al.  Iso-charts: stretch-driven mesh parameterization using spectral analysis , 2004, SGP '04.

[16]  Vladimir Kolmogorov,et al.  An Experimental Comparison of Min-Cut/Max-Flow Algorithms for Energy Minimization in Vision , 2004, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Szymon Rusinkiewicz,et al.  Efficiently combining positions and normals for precise 3D geometry , 2005, ACM Trans. Graph..

[18]  Richard Szeliski,et al.  A Comparison and Evaluation of Multi-View Stereo Reconstruction Algorithms , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[19]  Steven M. Seitz,et al.  Photo tourism: exploring photo collections in 3D , 2006, ACM Trans. Graph..

[20]  R. Cipolla,et al.  Multi-view photometric stereo , 2007 .

[21]  Roberto Cipolla,et al.  Multiview Stereo via Volumetric Graph-Cuts and Occlusion Robust Photo-Consistency , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  Roberto Cipolla,et al.  Probabilistic visibility for multi-view stereo , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[23]  H. Hirschmüller Stereo Processing by Semiglobal Matching and Mutual Information , 2008, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  László Szirmay-Kalos,et al.  Displacement Mapping on the GPU — State of the Art , 2008 .

[25]  Roberto Cipolla,et al.  Multiview Photometric Stereo , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  Pieter Peers,et al.  Dynamic shape capture using multi-view photometric stereo , 2009, ACM Trans. Graph..

[27]  Yongtian Wang,et al.  Robust Photometric Stereo via Low-Rank Matrix Completion and Recovery , 2010, ACCV.

[28]  A. Ungar Barycentric calculus in euclidean and hyperbolic geometry: a comparative introduction , 2010 .

[29]  Yi Ma,et al.  The Augmented Lagrange Multiplier Method for Exact Recovery of Corrupted Low-Rank Matrices , 2010, Journal of structural biology.

[30]  Michael S. Brown,et al.  A framework for ultra high resolution 3D imaging , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[31]  Yasuyuki Matsushita,et al.  High-quality shape from multi-view stereo and shading under general illumination , 2011, CVPR 2011.

[32]  Qionghai Dai,et al.  Fusing Multiview and Photometric Stereo for 3D Reconstruction under Uncalibrated Illumination , 2011, IEEE Transactions on Visualization and Computer Graphics.

[33]  Timothy A. Davis,et al.  Algorithm 915, SuiteSparseQR: Multifrontal multithreaded rank-revealing sparse QR factorization , 2011, TOMS.

[34]  Andrew W. Fitzgibbon,et al.  KinectFusion: real-time 3D reconstruction and interaction using a moving depth camera , 2011, UIST.

[35]  Qing Zhang,et al.  Edge-preserving photometric stereo via depth fusion , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[36]  Takayuki Okatani,et al.  Optimal integration of photometric and geometric surface measurements using inaccurate reflectance/illumination knowledge , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[37]  Alexandre Bernardino,et al.  Unifying Nuclear Norm and Bilinear Factorization Approaches for Low-Rank Matrix Decomposition , 2013, 2013 IEEE International Conference on Computer Vision.

[38]  Yasuyuki Matsushita,et al.  Multiview Photometric Stereo Using Planar Mesh Parameterization , 2013, 2013 IEEE International Conference on Computer Vision.

[39]  Michael M. Kazhdan,et al.  Screened poisson surface reconstruction , 2013, TOGS.

[40]  In-So Kweon,et al.  High Quality Shape from a Single RGB-D Image under Uncalibrated Natural Illumination , 2013, 2013 IEEE International Conference on Computer Vision.

[41]  G. Sapiro,et al.  A collaborative framework for 3D alignment and classification of heterogeneous subvolumes in cryo-electron tomography. , 2013, Journal of structural biology.

[42]  Zhe Wu,et al.  Multi-view Photometric Stereo with Spatially Varying Isotropic Materials , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[43]  In-So Kweon,et al.  Partial Sum Minimization of Singular Values in RPCA for Low-Level Vision , 2013, 2013 IEEE International Conference on Computer Vision.

[44]  Stephen Lin,et al.  Shading-Based Shape Refinement of RGB-D Images , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[45]  In-So Kweon,et al.  Exploiting Shading Cues in Kinect IR Images for Geometry Refinement , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[46]  In-So Kweon,et al.  Dense Depth and Albedo from a Single-Shot Structured Light , 2015, 2015 International Conference on 3D Vision.