Periodic orbits as the skeleton classical and quantum chaos
暂无分享,去创建一个
[1] C. Mira,et al. Chaotic Dynamics: From the One-Dimensional Endomorphism to the Two-Dimensional Diffeomorphism , 1987 .
[2] M. W. Shields. An Introduction to Automata Theory , 1988 .
[3] H. Poincaré,et al. Les méthodes nouvelles de la mécanique céleste , 1899 .
[4] M. Gutzwiller,et al. Energy Spectrum According to Classical Mechanics , 1970 .
[5] R. Balian,et al. Solution of the Schrodinger Equation in Terms of Classical Paths , 1974 .
[6] L. Goddard. Non-Linear Oscillations , 1963, Nature.
[7] W. Thurston,et al. On iterated maps of the interval , 1988 .
[8] Michael Doob,et al. Spectra of graphs , 1980 .
[9] Cvitanovic,et al. Invariant measurement of strange sets in terms of cycles. , 1988, Physical review letters.
[10] G. Gunaratne,et al. On the mode-locking universality for critical circle maps , 1990 .
[11] P. Grassberger,et al. On the symbolic dynamics of the Henon map , 1989 .
[12] S. Smale. Differentiable dynamical systems , 1967 .
[13] W. Parry,et al. An analogue of the prime number theorem for closed orbits of Axiom A flows , 1983 .
[14] Christiansen,et al. Determination of correlation spectra in chaotic systems. , 1990, Physical review letters.
[15] J. Eckmann,et al. Iterated maps on the interval as dynamical systems , 1980 .
[16] Cvitanovic,et al. Periodic-orbit quantization of chaotic systems. , 1989, Physical review letters.
[17] M. Gutzwiller,et al. Periodic Orbits and Classical Quantization Conditions , 1971 .
[18] Erik Aurell,et al. Recycling of strange sets: I. Cycle expansions , 1990 .
[19] D. Ruelle. Zeta-functions for expanding maps and Anosov flows , 1976 .
[20] D. Ruelle. Locating resonances for AxiomA dynamical systems , 1986 .
[21] Cvitanovic,et al. Topological and metric properties of Hénon-type strange attractors. , 1988, Physical review. A, General physics.
[22] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[23] 守屋 悦朗,et al. J.E.Hopcroft, J.D. Ullman 著, "Introduction to Automata Theory, Languages, and Computation", Addison-Wesley, A5変形版, X+418, \6,670, 1979 , 1980 .
[24] E. M.,et al. Statistical Mechanics , 2021, Manual for Theoretical Chemistry.
[25] S. Rice,et al. Exact quantization of the scattering from a classically chaotic repellor , 1989 .
[26] F. Fer,et al. Thermodynamic formalism. The mathematical structures of classical equilibrium statistical mechanics : Vol. 5. by David Ruelle, Addison Wesley, Reading, MA, 1978, $ 21.50 , 1980 .
[27] M. Gutzwiller. Phase-Integral Approximation in Momentum Space and the Bound States of an Atom , 1967 .
[28] Erik Aurell,et al. Recycling of strange sets: II. Applications , 1990 .
[29] P. Holmes,et al. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.
[30] A. Voros. Unstable periodic orbits and semiclassical quantisation , 1988 .
[31] David Fried. The zeta functions of Ruelle and Selberg. I , 1986 .
[32] M. Gutzwiller. From classical to quantum mechanics with hard chaos , 1988 .
[33] Michael V Berry,et al. Semiclassical approximations in wave mechanics , 1972 .
[34] D. Ruelle,et al. Resonances for intermittent systems , 1989 .
[35] P. Cvitanović,et al. Periodic orbit expansions for classical smooth flows , 1991 .
[36] R. Bowen. Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms , 1975 .
[37] Jeffrey D. Ullman,et al. Introduction to Automata Theory, Languages and Computation , 1979 .
[38] S. Rice,et al. Semiclassical quantization of the scattering from a classically chaotic repellor , 1989 .
[39] Nicholas C. Metropolis,et al. On Finite Limit Sets for Transformations on the Unit Interval , 1973, J. Comb. Theory A.
[40] A. Grothendieck. La théorie de Fredholm , 1956 .
[41] S. Rice,et al. Scattering from a classically chaotic repellor , 1989 .
[42] Barry Mazur,et al. On Periodic Points , 1965 .
[43] The spectrum of the period-doubling operator in terms of cycles , 1990 .