Periodic orbits as the skeleton classical and quantum chaos

A description of a low-dimensional deterministic chaotic system in terms of unstable periodic orbits (cycles) is a powerful tool for theoretical and experimental analysis of both classical and quantum deterministic chaos, comparable to the familiar perturbation expansions for nearly integrable systems. The infinity of orbits characteristic of a chaotic dynamical system can be resummed and brought to a Selberg product form, dominated by the short cycles, and the eigenvalue spectrum of operators associated with the dynamical flow can then be evaluated in terms of unstable periodic orbits. Methods for implementing this computation for finite subshift dynamics are introduced.

[1]  C. Mira,et al.  Chaotic Dynamics: From the One-Dimensional Endomorphism to the Two-Dimensional Diffeomorphism , 1987 .

[2]  M. W. Shields An Introduction to Automata Theory , 1988 .

[3]  H. Poincaré,et al.  Les méthodes nouvelles de la mécanique céleste , 1899 .

[4]  M. Gutzwiller,et al.  Energy Spectrum According to Classical Mechanics , 1970 .

[5]  R. Balian,et al.  Solution of the Schrodinger Equation in Terms of Classical Paths , 1974 .

[6]  L. Goddard Non-Linear Oscillations , 1963, Nature.

[7]  W. Thurston,et al.  On iterated maps of the interval , 1988 .

[8]  Michael Doob,et al.  Spectra of graphs , 1980 .

[9]  Cvitanovic,et al.  Invariant measurement of strange sets in terms of cycles. , 1988, Physical review letters.

[10]  G. Gunaratne,et al.  On the mode-locking universality for critical circle maps , 1990 .

[11]  P. Grassberger,et al.  On the symbolic dynamics of the Henon map , 1989 .

[12]  S. Smale Differentiable dynamical systems , 1967 .

[13]  W. Parry,et al.  An analogue of the prime number theorem for closed orbits of Axiom A flows , 1983 .

[14]  Christiansen,et al.  Determination of correlation spectra in chaotic systems. , 1990, Physical review letters.

[15]  J. Eckmann,et al.  Iterated maps on the interval as dynamical systems , 1980 .

[16]  Cvitanovic,et al.  Periodic-orbit quantization of chaotic systems. , 1989, Physical review letters.

[17]  M. Gutzwiller,et al.  Periodic Orbits and Classical Quantization Conditions , 1971 .

[18]  Erik Aurell,et al.  Recycling of strange sets: I. Cycle expansions , 1990 .

[19]  D. Ruelle Zeta-functions for expanding maps and Anosov flows , 1976 .

[20]  D. Ruelle Locating resonances for AxiomA dynamical systems , 1986 .

[21]  Cvitanovic,et al.  Topological and metric properties of Hénon-type strange attractors. , 1988, Physical review. A, General physics.

[22]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[23]  守屋 悦朗,et al.  J.E.Hopcroft, J.D. Ullman 著, "Introduction to Automata Theory, Languages, and Computation", Addison-Wesley, A5変形版, X+418, \6,670, 1979 , 1980 .

[24]  E. M.,et al.  Statistical Mechanics , 2021, Manual for Theoretical Chemistry.

[25]  S. Rice,et al.  Exact quantization of the scattering from a classically chaotic repellor , 1989 .

[26]  F. Fer,et al.  Thermodynamic formalism. The mathematical structures of classical equilibrium statistical mechanics : Vol. 5. by David Ruelle, Addison Wesley, Reading, MA, 1978, $ 21.50 , 1980 .

[27]  M. Gutzwiller Phase-Integral Approximation in Momentum Space and the Bound States of an Atom , 1967 .

[28]  Erik Aurell,et al.  Recycling of strange sets: II. Applications , 1990 .

[29]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[30]  A. Voros Unstable periodic orbits and semiclassical quantisation , 1988 .

[31]  David Fried The zeta functions of Ruelle and Selberg. I , 1986 .

[32]  M. Gutzwiller From classical to quantum mechanics with hard chaos , 1988 .

[33]  Michael V Berry,et al.  Semiclassical approximations in wave mechanics , 1972 .

[34]  D. Ruelle,et al.  Resonances for intermittent systems , 1989 .

[35]  P. Cvitanović,et al.  Periodic orbit expansions for classical smooth flows , 1991 .

[36]  R. Bowen Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms , 1975 .

[37]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[38]  S. Rice,et al.  Semiclassical quantization of the scattering from a classically chaotic repellor , 1989 .

[39]  Nicholas C. Metropolis,et al.  On Finite Limit Sets for Transformations on the Unit Interval , 1973, J. Comb. Theory A.

[40]  A. Grothendieck La théorie de Fredholm , 1956 .

[41]  S. Rice,et al.  Scattering from a classically chaotic repellor , 1989 .

[42]  Barry Mazur,et al.  On Periodic Points , 1965 .

[43]  The spectrum of the period-doubling operator in terms of cycles , 1990 .