A finite element method for the Frobenius-Perron operator equation

We present a finite element framework to numerically solve the absolutely continuous invariant measure associated with a non-singular transformation. Both convergence analysis and error estimates of the method are given for a class of mappings in R^n.

[1]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[2]  J. Schwartz,et al.  Linear Operators. Part I: General Theory. , 1960 .

[3]  W. Dahmen,et al.  Multilevel preconditioning , 1992 .

[4]  A. Boyarsky,et al.  Absolutely continuous invariant measures for piecewise expandingC2 transformations inRN , 1989 .

[5]  Paweł Gora,et al.  Absolutely continuous invariant measures for piecewise expanding C 2 transformat , 1989 .

[6]  Harry Yserentant,et al.  A basic norm equivalence for the theory of multilevel methods , 1993 .

[7]  M. Mackey,et al.  Probabilistic properties of deterministic systems , 1985, Acta Applicandae Mathematicae.

[8]  E. Giusti Minimal surfaces and functions of bounded variation , 1977 .

[9]  Jiu Ding,et al.  Piecewise linear Markov approximations of Frobenius-Perron operators associated with multi-dimensional transformations , 1995 .

[10]  Jiu Ding,et al.  Projection solutions of Frobenius-Perron operator equations. , 1993 .

[11]  J. Yorke,et al.  On the existence of invariant measures for piecewise monotonic transformations , 1973 .

[12]  Jiu Ding,et al.  The projection method for computing multidimensional absolutely continuous invariant measures , 1994 .

[13]  Tien Yien Li,et al.  Markov finite approximation of Frobenius-Perron operator , 1991 .

[14]  S. Ulam A collection of mathematical problems , 1960 .

[15]  Tien-Yien Li Finite approximation for the Frobenius-Perron operator. A solution to Ulam's conjecture , 1976 .

[16]  Jiu Ding,et al.  Finite approximations of Frobenius-Perron operators. A solution of Ulam's conjecture to multi-dimensional transformations , 1996 .

[17]  On invariant measures for piecewise $C^2$-transformations of the n-dimensional cube , 1983 .

[18]  Tien Yien Li,et al.  A convergence rate analysis for Markov finite approximations to a class of Frobenius-Perron operators , 1998 .

[19]  Abraham Boyarsky,et al.  Approximating measures invariant under higher-dimensional chaotic transformations , 1991 .