The TRAPPIST-1 JWST Community Initiative

The upcoming launch of the James Webb Space Telescope (JWST) combined with the unique features of the TRAPPIST-1 planetary system should enable the young field of exoplanetology to enter into the realm of temperate Earth-sized worlds. Indeed, the proximity of the system (12pc) and the small size (0.12 Rsun) and luminosity (0.05 Lsun) of its host star should make the comparative atmospheric characterization of its seven transiting planets within reach of an ambitious JWST program. Given the limited lifetime of JWST, the ecliptic location of the star that limits its visibility to 100d per year, the large number of observational time required by this study, and the numerous observational and theoretical challenges awaiting it, its full success will critically depend on a large level of coordination between the involved teams and on the support of a large community. In this context, we present here a community initiative aiming to develop a well-defined sequential structure for the study of the system with JWST and to coordinate on every aspect of its preparation and implementation, both on the observational (e.g. study of the instrumental limitations, data analysis techniques, complementary space-based and ground-based observations) and theoretical levels (e.g. model developments and comparison, retrieval techniques, inferences). Depending on the outcome of the first phase of JWST observations of the planets, this initiative could become the seed of a major JWST Legacy Program devoted to the study of TRAPPIST-1.

[1]  Inward Migration , 2021, ‘Doctors for Export’.

[2]  Zachary L. Langford,et al.  Refining the Transit-timing and Photometric Analysis of TRAPPIST-1: Masses, Radii, Densities, Dynamics, and Ephemerides , 2020, The Planetary Science Journal.

[3]  E. Agol,et al.  TRAPPIST-1: Global results of the Spitzer Exploration Science Program Red Worlds , 2020, 2006.13826.

[4]  E. Agol,et al.  Impact of tides on the transit-timing fits to the TRAPPIST-1 system , 2020, Astronomy & Astrophysics.

[5]  M. Turbet,et al.  Sensitive probing of exoplanetary oxygen via mid-infrared collisional absorption , 2020, Nature Astronomy.

[6]  A. Mandell,et al.  Dim Prospects for Transmission Spectra of Ocean Earths around M Stars , 2019, The Astrophysical Journal.

[7]  R. Hu,et al.  O2- and CO-rich Atmospheres for Potentially Habitable Environments on TRAPPIST-1 Planets , 2019, The Astrophysical Journal.

[8]  G. Montavon,et al.  Machine-learning Inference of the Interior Structure of Low-mass Exoplanets , 2019, The Astrophysical Journal.

[9]  J. Wit,et al.  Impact of Clouds and Hazes on the Simulated JWST Transmission Spectra of Habitable Zone Planets in the TRAPPIST-1 System , 2019, The Astrophysical Journal.

[10]  J. Teske,et al.  A Reanalysis of the Fundamental Parameters and Age of TRAPPIST-1 , 2019, The Astrophysical Journal.

[11]  J. Fortney,et al.  The Precision of Mass Measurements Required for Robust Atmospheric Characterization of Transiting Exoplanets , 2019, The Astrophysical Journal.

[12]  J. Fortney,et al.  Water Vapor and Clouds on the Habitable-zone Sub-Neptune Exoplanet K2-18b , 2019, The Astrophysical Journal.

[13]  M. Gillon,et al.  Latest news of SPECULOOS and TRAPPIST-1 , 2019 .

[14]  M. Way,et al.  TRAPPIST-1 Habitable Atmosphere Intercomparison (THAI). Motivations and protocol , 2019 .

[15]  K. Stassun,et al.  Absence of a thick atmosphere on the terrestrial exoplanet LHS 3844b , 2019, Nature.

[16]  A. Moya,et al.  Erosion of an exoplanetary atmosphere caused by stellar winds , 2019, Astronomy & Astrophysics.

[17]  D. Abbot,et al.  Identifying Candidate Atmospheres on Rocky M Dwarf Planets via Eclipse Photometry , 2019, The Astrophysical Journal.

[18]  J. Bean,et al.  Identifying Atmospheres on Rocky Exoplanets through Inferred High Albedo , 2019, The Astrophysical Journal.

[19]  J. Donati,et al.  Simulating radial velocity observations of trappist-1 with SPIRou , 2019, Monthly Notices of the Royal Astronomical Society.

[20]  S. Schmidt,et al.  The Ultracool SpeXtroscopic Survey. I. Volume-limited Spectroscopic Sample and Luminosity Function of M7−L5 Ultracool Dwarfs , 2019, The Astrophysical Journal.

[21]  R. Kopparapu,et al.  Simulated Phase-dependent Spectra of Terrestrial Aquaplanets in M Dwarf Systems , 2019, The Astrophysical Journal.

[22]  V. Meadows,et al.  The Detectability and Characterization of the TRAPPIST-1 Exoplanet Atmospheres with JWST , 2019, The Astronomical Journal.

[23]  A. Burdanov,et al.  Ground-based follow-up observations of TRAPPIST-1 transits in the near-infrared , 2019, Monthly Notices of the Royal Astronomical Society.

[24]  M. Way,et al.  Impact of space weather on climate and habitability of terrestrial-type exoplanets , 2019, International Journal of Astrobiology.

[25]  V. Dobos,et al.  The tidal parameters of TRAPPIST-1b and c , 2019, Monthly Notices of the Royal Astronomical Society.

[26]  D. Abbot,et al.  Simulations of Water Vapor and Clouds on Rapidly Rotating and Tidally Locked Planets: A 3D Model Intercomparison , 2019, The Astrophysical Journal.

[27]  N. Madhusudhan Exoplanetary Atmospheres: Key Insights, Challenges, and Prospects , 2019, Annual Review of Astronomy and Astrophysics.

[28]  Franz Schreier,et al.  Detectability of atmospheric features of Earth-like planets in the habitable zone around M dwarfs , 2019, Astronomy & Astrophysics.

[29]  J. Drake,et al.  Stellar Energetic Particles in the Magnetically Turbulent Habitable Zones of TRAPPIST-1-like Planetary Systems , 2019, The Astrophysical Journal.

[30]  F. Selsis,et al.  Effects of a fully 3D atmospheric structure on exoplanet transmission spectra: retrieval biases due to day–night temperature gradients , 2019, Astronomy & Astrophysics.

[31]  D. Abbot,et al.  The Atmospheric Circulation and Climate of Terrestrial Planets Orbiting Sun-like and M Dwarf Stars over a Broad Range of Planetary Parameters , 2019, The Astrophysical Journal.

[32]  T. Barman,et al.  Predicting the Extreme Ultraviolet Radiation Environment of Exoplanets around Low-mass Stars: The TRAPPIST-1 System , 2018, The Astrophysical Journal.

[33]  S. Sohy,et al.  The SPECULOOS Southern Observatory Begins its Hunt for Rocky Planets , 2018 .

[34]  Adam L. Kraus,et al.  How to Constrain Your M Dwarf. II. The Mass–Luminosity–Metallicity Relation from 0.075 to 0.70 Solar Masses , 2018, The Astrophysical Journal.

[35]  J. Valenti,et al.  Disentangling the Planet from the Star in Late-Type M Dwarfs: A Case Study of TRAPPIST-1g , 2018, The Astronomical Journal.

[36]  D. Mullan,et al.  Magnetic Fields on the Flare Star Trappist-1: Consequences for Radius Inflation and Planetary Habitability , 2018, The Astrophysical Journal.

[37]  R. Luger,et al.  Evolved Climates and Observational Discriminants for the TRAPPIST-1 Planetary System , 2018, The Astrophysical Journal.

[38]  Sara Seager,et al.  TESS Discovery of an Ultra-short-period Planet around the Nearby M Dwarf LHS 3844 , 2018, The Astrophysical Journal.

[39]  M. G. MacDonald,et al.  Three Pathways for Observed Resonant Chains , 2018, The Astronomical Journal.

[40]  D. Catling,et al.  Detectability of Biosignatures in Anoxic Atmospheres with the James Webb Space Telescope: A TRAPPIST-1e Case Study , 2018, The Astronomical Journal.

[41]  M. Kelley,et al.  Climates of Warm Earth-like Planets. I. 3D Model Simulations , 2018, The Astrophysical journal. Supplement series.

[42]  Y. Alibert,et al.  Interior Characterization in Multiplanetary Systems: TRAPPIST-1 , 2018, The Astrophysical Journal.

[43]  S. Hawley,et al.  Non-detection of Contamination by Stellar Activity in the Spitzer Transit Light Curves of TRAPPIST-1 , 2018, The Astrophysical Journal.

[44]  D. Apai,et al.  ACCESS: a featureless optical transmission spectrum for WASP-19b from Magellan/IMACS , 2018, Monthly Notices of the Royal Astronomical Society.

[45]  Zouhair Benkhaldoun,et al.  SPECULOOS: a network of robotic telescopes to hunt for terrestrial planets around the nearest ultracool dwarfs , 2018, Astronomical Telescopes + Instrumentation.

[46]  S. Desch,et al.  Updated Compositional Models of the TRAPPIST-1 Planets , 2018, Research Notes of the AAS.

[47]  K. Stassun,et al.  Evidence for a Systematic Offset of −80 μas in the Gaia DR2 Parallaxes , 2018, The Astrophysical Journal.

[48]  P. J. Richards,et al.  Gaia Data Release 2. Summary of the contents and survey properties , 2018, 1804.09365.

[49]  J. Winters,et al.  The Solar Neighborhood XLIV: RECONS Discoveries within 10 parsecs , 2018, The Astronomical Journal.

[50]  Michaël Gillon,et al.  Searching for red worlds , 2018 .

[51]  S. Schmidt,et al.  K2 Ultracool Dwarfs Survey. III. White Light Flares Are Ubiquitous in M6-L0 Dwarfs , 2018, 1803.07708.

[52]  Nikole K. Lewis,et al.  Strategies for Constraining the Atmospheres of Temperate Terrestrial Planets with JWST , 2018, 1803.07983.

[53]  J. Drake,et al.  Energy Dissipation in the Upper Atmospheres of TRAPPIST-1 Planets , 2018, The astrophysical journal. Letters.

[54]  Michael D. Smith,et al.  Planetary Spectrum Generator: An accurate online radiative transfer suite for atmospheres, comets, small bodies and exoplanets , 2018, Journal of Quantitative Spectroscopy and Radiative Transfer.

[55]  Yifan Zhou,et al.  The Near-infrared Transmission Spectra of TRAPPIST-1 Planets b, c, d, e, f, and g and Stellar Contamination in Multi-epoch Transit Spectra , 2018, The Astronomical Journal.

[56]  Kevin Heng,et al.  The nature of the TRAPPIST-1 exoplanets. , 2018, 1802.01377.

[57]  Brice-Olivier Demory,et al.  Atmospheric reconnaissance of the habitable-zone Earth-sized planets orbiting TRAPPIST-1 , 2018, 1802.02250.

[58]  James G. Ingalls,et al.  Early 2017 observations of TRAPPIST-1 with Spitzer , 2018, 1801.02554.

[59]  Brice-Olivier Demory,et al.  Stellar Parameters for Trappist-1 , 2017, 1712.01911.

[60]  J. Davenport,et al.  Modeling Repeated M Dwarf Flaring at an Earth-like Planet in the Habitable Zone: Atmospheric Effects for an Unmagnetized Planet , 2017, Astrobiology.

[61]  J. Papaloizou,et al.  The TRAPPIST-1 system: orbital evolution, tidal dissipation, formation and habitability , 2017, 1711.07932.

[62]  Mark S. Giampapa,et al.  The Transit Light Source Effect: False Spectral Features and Incorrect Densities for M-dwarf Transiting Planets , 2017, 1711.05691.

[63]  E. Agol,et al.  Planet–Planet Occultations in TRAPPIST-1 and Other Exoplanet Systems , 2017, 1711.05739.

[64]  S. Kane,et al.  The Stellar Activity of TRAPPIST-1 and Consequences for the Planetary Atmospheres , 2017, 1711.02676.

[65]  M. Joshi,et al.  Demarcating Circulation Regimes of Synchronously Rotating Terrestrial Planets within the Habitable Zone , 2017, 1710.00435.

[66]  A. Burdanov,et al.  SPECULOOS exoplanet search and its prototype on TRAPPIST , 2017, 1710.03775.

[67]  F. Bouchy,et al.  NIRPS: an adaptive-optics assisted radial velocity spectrograph to chase exoplanets around M-stars , 2017, Optical Engineering + Applications.

[68]  Tyler Robinson,et al.  Observing the Atmospheres of Known Temperate Earth-sized Planets with JWST , 2017, 1708.04239.

[69]  A.H.M.J.Triaud,et al.  Temporal Evolution of the High-energy Irradiation and Water Content of TRAPPIST-1 Exoplanets , 2017, 1708.09484.

[70]  E. Agol,et al.  Transit Timing and Duration Variations for the Discovery and Characterization of Exoplanets , 2017, 1706.09849.

[71]  J. Drake,et al.  The Threatening Magnetic and Plasma Environment of the TRAPPIST-1 Planets , 2017, 1706.04617.

[72]  S. Desch,et al.  Inward migration of the TRAPPIST-1 planets as inferred from their water-rich compositions , 2017, 1706.02689.

[73]  A. Burgasser,et al.  On the Age of the TRAPPIST-1 System , 2017, 1706.02018.

[74]  S. Grimm,et al.  Habitable Moist Atmospheres on Terrestrial Planets near the Inner Edge of the Habitable Zone around M Dwarfs , 2017, 1705.10362.

[75]  N. Kiang,et al.  Exoplanet Biosignatures: A Review of Remotely Detectable Signs of Life , 2017, Astrobiology.

[76]  C. Dong,et al.  Atmospheric escape from the TRAPPIST-1 planets and implications for habitability , 2017, Proceedings of the National Academy of Sciences.

[77]  Nikole K. Lewis,et al.  HAT-P-26b: A Neptune-mass exoplanet with a well-constrained heavy element abundance , 2017, Science.

[78]  A. D. Del Genio,et al.  NIR-driven Moist Upper Atmospheres of Synchronously Rotating Temperate Terrestrial Exoplanets , 2017, 1704.05878.

[79]  Norman Murray,et al.  Convergent Migration Renders TRAPPIST-1 Long-lived , 2017, 1704.02957.

[80]  A. Pál,et al.  Frequent Flaring in the TRAPPIST-1 System—Unsuited for Life? , 2017, 1703.10130.

[81]  C. S. Fernandes,et al.  A seven-planet resonant chain in TRAPPIST-1 , 2017, Nature Astronomy.

[82]  C. S. Fernandes,et al.  Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1 , 2017, Nature.

[83]  Klaus Pontoppidan,et al.  PandExo: A Community Tool for Transiting Exoplanet Science with JWST & HST , 2017, 1702.01820.

[84]  Konstantin Grankin,et al.  Placing the Spotted T Tauri Star LkCa 4 on an HR Diagram , 2017, 1701.06703.

[85]  Jennifer G. Winters,et al.  SPECKLE IMAGING EXCLUDES LOW-MASS COMPANIONS ORBITING THE EXOPLANET HOST STAR TRAPPIST-1 , 2016, 1610.05269.

[86]  E. Guinan,et al.  The habitability of Proxima Centauri b. I. Irradiation, rotation and volatile inventory from formation to the present , 2016, 1608.06813.

[87]  Ignasi Ribas,et al.  The habitability of Proxima Centauri b II. Possible climates and Observability , 2016, 1608.06827.

[88]  E. Ford,et al.  A DYNAMICAL ANALYSIS OF THE KEPLER-80 SYSTEM OF FIVE TRANSITING PLANETS , 2016, 1607.07540.

[89]  Nikole K. Lewis,et al.  A combined transmission spectrum of the Earth-sized exoplanets TRAPPIST-1 b and c , 2016, Nature.

[90]  Joanna K. Barstow,et al.  Habitable worlds with JWST: transit spectroscopy of the TRAPPIST-1 system? , 2016, 1605.07352.

[91]  D. Ehrenreich,et al.  Strong XUV irradiation of the Earth-sized exoplanets orbiting the ultracool dwarf TRAPPIST-1 , 2016, 1605.01564.

[92]  D. Abbot,et al.  TEMPERATURE STRUCTURE AND ATMOSPHERIC CIRCULATION OF DRY TIDALLY LOCKED ROCKY EXOPLANETS , 2016, The Astrophysical journal.

[93]  É. Bolmont,et al.  Water loss from terrestrial planets orbiting ultracool dwarfs: implications for the planets of TRAPPIST-1 , 2016, 1605.00616.

[94]  P. Magain,et al.  Temperate Earth-sized planets transiting a nearby ultracool dwarf star , 2016, Nature.

[95]  A. Misra,et al.  IDENTIFYING PLANETARY BIOSIGNATURE IMPOSTORS: SPECTRAL FEATURES OF CO AND O4 RESULTING FROM ABIOTIC O2/O3 PRODUCTION , 2016, The astrophysical journal. Letters.

[96]  S. Mohanty,et al.  Habitability of terrestrial-mass planets in the HZ of M Dwarfs – I. H/He-dominated atmospheres , 2016, 1601.05143.

[97]  T. Evans,et al.  A continuum from clear to cloudy hot-Jupiter exoplanets without primordial water depletion , 2015, Nature.

[98]  K. Cahoy,et al.  Seeing Through the Clouds: Thermal Emission and Reflected Light Spectra of Super-Earths with Flat Transmission Spectra , 2015 .

[99]  E. Chiang,et al.  TO COOL IS TO ACCRETE: ANALYTIC SCALINGS FOR NEBULAR ACCRETION OF PLANETARY ATMOSPHERES , 2015, 1508.05096.

[100]  K. Cruz,et al.  FUNDAMENTAL PARAMETERS AND SPECTRAL ENERGY DISTRIBUTIONS OF YOUNG AND FIELD AGE OBJECTS WITH MASSES SPANNING THE STELLAR TO PLANETARY REGIME , 2015, 1508.01767.

[101]  Andrew A. West,et al.  THE BROWN DWARF KINEMATICS PROJECT (BDKP). IV. RADIAL VELOCITIES OF 85 LATE-M AND L DWARFS WITH MagE , 2015, 1507.00057.

[102]  Drake Deming,et al.  THE TRANSITING EXOPLANET SURVEY SATELLITE: SIMULATIONS OF PLANET DETECTIONS AND ASTROPHYSICAL FALSE POSITIVES , 2015, 1506.03845.

[103]  Brice-Olivier Demory,et al.  Variability in the super-Earth 55 Cnc e , 2015, 1505.00269.

[104]  S. Hubrig,et al.  Magnetic Fields , 2015, Physics Problems for Aspiring Physical Scientists and Engineers.

[105]  R. Luger,et al.  Extreme water loss and abiotic O2 buildup on planets throughout the habitable zones of M dwarfs. , 2014, Astrobiology.

[106]  C. Blake,et al.  WISE J072003.20-084651.2: AN OLD AND ACTIVE M9.5 + T5 SPECTRAL BINARY 6 pc FROM THE SUN , 2014, 1410.4288.

[107]  Joshua N. Winn,et al.  The Occurrence and Architecture of Exoplanetary Systems , 2014, 1410.4199.

[108]  J. Bochanski,et al.  BOSS ULTRACOOL DWARFS. I. COLORS AND MAGNETIC ACTIVITY OF M AND L DWARFS , 2014, 1410.0014.

[109]  P. McCullough,et al.  Transiting Exoplanet Survey Satellite (TESS) , 2014, Astronomical Telescopes and Instrumentation.

[110]  Sara Seager,et al.  PHOTOCHEMISTRY IN TERRESTRIAL EXOPLANET ATMOSPHERES. III. PHOTOCHEMISTRY AND THERMOCHEMISTRY IN THICK ATMOSPHERES ON SUPER EARTHS AND MINI NEPTUNES , 2014, 1401.0948.

[111]  J. Bean,et al.  Clouds in the atmosphere of the super-Earth exoplanet GJ 1214b , 2013, Nature.

[112]  Sara Seager,et al.  Constraining Exoplanet Mass from Transmission Spectroscopy , 2013, Science.

[113]  J. Winters,et al.  THE SOLAR NEIGHBORHOOD. XXXII. THE HYDROGEN BURNING LIMIT, , 2013, 1312.1736.

[114]  E. Mamajek,et al.  INTRINSIC COLORS, TEMPERATURES, AND BOLOMETRIC CORRECTIONS OF PRE-MAIN-SEQUENCE STARS , 2013, 1307.2657.

[115]  Dorian S. Abbot,et al.  STABILIZING CLOUD FEEDBACK DRAMATICALLY EXPANDS THE HABITABLE ZONE OF TIDALLY LOCKED PLANETS , 2013, 1307.0515.

[116]  Aomawa L. Shields,et al.  The effect of host star spectral energy distribution and ice-albedo feedback on the climate of extrasolar planets. , 2013, Astrobiology.

[117]  Didier Queloz,et al.  TRAPPIST-UCDTS: A prototype search for habitable planets transiting ultra-cool stars , 2013 .

[118]  K. Luhman,et al.  DISCOVERY OF A BINARY BROWN DWARF AT 2 pc FROM THE SUN , 2013, 1303.2401.

[119]  Paul M. Brunet,et al.  The Gaia mission , 2013, 1303.0303.

[120]  S. Seager,et al.  DETECTION OF THERMAL EMISSION FROM A SUPER-EARTH , 2012, 1205.1766.

[121]  Sara Seager,et al.  THEORETICAL SPECTRA OF TERRESTRIAL EXOPLANET SURFACES , 2012, 1204.1544.

[122]  Jean-Baptiste Madeleine,et al.  GLIESE 581D IS THE FIRST DISCOVERED TERRESTRIAL-MASS EXOPLANET IN THE HABITABLE ZONE , 2011, 1105.1031.

[123]  Franck Selsis,et al.  Thermal phase curves of nontransiting terrestrial exoplanets - I. Characterizing atmospheres , 2011, 1104.4763.

[124]  J. Winn Exoplanet Transits and Occultations , 2010 .

[125]  G. Basri,et al.  A VOLUME-LIMITED SAMPLE OF 63 M7–M9.5 DWARFS. II. ACTIVITY, MAGNETISM, AND THE FADE OF THE ROTATION-DOMINATED DYNAMO , 2009, 0912.4259.

[126]  S. Seager,et al.  ON THE METHOD TO INFER AN ATMOSPHERE ON A TIDALLY LOCKED SUPER EARTH EXOPLANET AND UPPER LIMITS TO GJ 876d , 2009, 0910.1505.

[127]  W. Traub,et al.  TRANSITS OF EARTH-LIKE PLANETS , 2009, 0903.3371.

[128]  D. Charbonneau The Rise of the Vulcans† , 2008, Proceedings of the International Astronomical Union.

[129]  David Charbonneau,et al.  Design Considerations for a Ground-Based Transit Search for Habitable Planets Orbiting M Dwarfs , 2007, 0709.2879.

[130]  Drake Deming,et al.  Spitzer Transit and Secondary Eclipse Photometry of GJ 436b , 2007, 0707.2778.

[131]  Austin,et al.  A Decreased Probability of Habitable Planet Formation around Low-Mass Stars , 2007, 0707.1711.

[132]  R. Mardling,et al.  Long-term tidal evolution of short-period planets with companions , 2007, 0706.0224.

[133]  G. Basri,et al.  The First Direct Measurements of Surface Magnetic Fields on Very Low Mass Stars , 2006, astro-ph/0610365.

[134]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[135]  J. Kasting,et al.  Biosignatures from Earth-like planets around M dwarfs. , 2005, Astrobiology.

[136]  Jonathan J. Fortney,et al.  The effect of condensates on the characterization of transiting planet atmospheres with transmission spectroscopy , 2005, astro-ph/0509292.

[137]  Matthew J. Holman,et al.  The Use of Transit Timing to Detect Terrestrial-Mass Extrasolar Planets , 2005, Science.

[138]  E. Agol,et al.  DHP Framework: Digital Health Passports Using Blockchain - Use case on international tourism during the COVID-19 pandemic , 2004, ArXiv.

[139]  S. Seager,et al.  A Unique Solution of Planet and Star Parameters from an Extrasolar Planet Transit Light Curve , 2002, astro-ph/0206228.

[140]  M. Mayor,et al.  A Jupiter-mass companion to a solar-type star , 1995, Nature.

[141]  S. Saar,et al.  Absolute Measurements of Starspot Area and Temperature: II Pegasi in 1989 October , 1995 .

[142]  J. Kasting,et al.  Runaway and moist greenhouse atmospheres and the evolution of Earth and Venus. , 1988, Icarus.

[143]  Hans Freudenthal The method , 1988 .

[144]  D. Strobel Atmospheric Escape , 2020, The Pluto System After New Horizons.

[145]  J. Mah,et al.  Formation and dynamics of the resonant chain in the trappist-1 exoplanet system , 2018 .

[146]  Inga Kamp,et al.  European Physical Journal Web of Conferences , 2015 .

[147]  Mark Clampin,et al.  Discovery and Characterization of Transiting SuperEarths Using an All-Sky Transit Survey and Follow-Up by the James Webb Space Telescope , 2010 .

[148]  A. Hanslmeier The Solar Neighborhood , 2009 .

[149]  M. Soleimani,et al.  The Effect of H2S on Production of Carbon Black From Sub-Quality Natural Gas , 2008 .

[150]  J. S. SHOEMAKER,et al.  LATEST NEWS , 2006 .

[151]  to appear in the Astronomical Journal The Solar Neighborhood X: New Nearby Stars in the Southern Sky and Accurate Photometric Distance Estimates for Red Dwarfs , 2004 .

[152]  J. Kasting,et al.  Habitable zones around main sequence stars. , 1993, Icarus.

[153]  Stellar parameters , 1986 .

[154]  F. Rawlins The Method , 1966, Nature.

[155]  Submitted to: Astrophysical Journal Letters Determination of the Interior Structure of Transiting Planets in Multiple-Planet Systems , 2022 .