Modified Multiscale Vector Finite Element Method on Polyhedral Meshes for the Time-Harmonic Electric Field

In this paper, we propose the modification of the vector multiscale finite element method on polyhedral meshes in H(curl) functional space. We consider the procedure for constructing nonpolynomial shape functions on polyhedral finite elements.

[1]  Glaucio H. Paulino,et al.  Polygonal finite elements for finite elasticity , 2015 .

[2]  Chandrajit L. Bajaj,et al.  Construction of Scalar and Vector Finite Element Families on Polygonal and Polyhedral Meshes , 2014, Comput. Methods Appl. Math..

[3]  Ahmed Alsaedi,et al.  Equivalent projectors for virtual element methods , 2013, Comput. Math. Appl..

[4]  Michael S. Floater,et al.  Mean value coordinates , 2003, Comput. Aided Geom. Des..

[5]  Amir R. Khoei,et al.  A polygonal finite element method for modeling arbitrary interfaces in large deformation problems , 2012 .

[6]  Alexandre Ern,et al.  An edge-based scheme on polyhedral meshes for vector advection-reaction equations , 2017 .

[7]  Joseph E. Bishop,et al.  A Finite-Element Method For Modeling Fluid-Pressure Induced Discrete-Fracture Propagation Using Random Meshes , 2012 .

[8]  Glaucio H. Paulino,et al.  Topology optimization using polytopes , 2013, 1312.7016.

[9]  Glaucio H. Paulino,et al.  Unstructured polygonal meshes with adaptive refinement for the numerical simulation of dynamic cohesive fracture , 2014, International Journal of Fracture.

[10]  Eugene L. Wachspress,et al.  Barycentric coordinates for polytopes , 2011, Comput. Math. Appl..

[11]  Paul C. Duffell,et al.  TESS: A RELATIVISTIC HYDRODYNAMICS CODE ON A MOVING VORONOI MESH , 2011, 1104.3562.

[12]  Raducanu Razvan,et al.  MATHEMATICAL MODELS and METHODS in APPLIED SCIENCES , 2012 .

[13]  D. Copeland Boundary-Element-Based Finite Element Methods for Helmholtz and Maxwell Equations on General Polyhedral Meshes , 2009 .

[14]  A. Ern,et al.  A Hybrid High-Order method for the incompressible Navier-Stokes equations based on Temam's device , 2018, J. Comput. Phys..

[15]  L. D. Marini,et al.  Lowest order Virtual Element approximation of magnetostatic problems , 2017, 1710.01888.

[16]  E. Shurina,et al.  Modified multiscale discontinuous Galerkin method in the function space H(curl) , 2016, 2016 13th International Scientific-Technical Conference on Actual Problems of Electronics Instrument Engineering (APEIE).

[17]  Sang Yong Lee,et al.  Polyhedral Mesh Generation and A Treatise on Concave Geometrical Edges , 2015 .

[18]  L. Beirao da Veiga,et al.  Divergence free Virtual Elements for the Stokes problem on polygonal meshes , 2015, 1510.01655.

[19]  Markus H. Gross,et al.  A Finite Element Method on Convex Polyhedra , 2007, Comput. Graph. Forum.

[20]  Glaucio H. Paulino,et al.  Some basic formulations of the virtual element method (VEM) for finite deformations , 2017 .

[21]  F. Brezzi,et al.  Basic principles of Virtual Element Methods , 2013 .

[22]  Matteo Bruggi,et al.  On the virtual element method for topology optimization on polygonal meshes: A numerical study , 2016, Comput. Math. Appl..

[23]  Alexandre Ern,et al.  Analysis of Compatible Discrete Operator Schemes for the Stokes Equations on Polyhedral Meshes , 2014, ArXiv.

[24]  Ronald H. W. Hoppe,et al.  Finite element methods for Maxwell's equations , 2005, Math. Comput..

[25]  Junping Wang,et al.  Interior penalty discontinuous Galerkin method on very general polygonal and polyhedral meshes , 2012, J. Comput. Appl. Math..

[26]  Lourenço Beirão da Veiga,et al.  H(div)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H({\text {div}})$$\end{document} and H(curl)\documentclass[12pt] , 2015, Numerische Mathematik.