Modified Multiscale Vector Finite Element Method on Polyhedral Meshes for the Time-Harmonic Electric Field
暂无分享,去创建一个
[1] Glaucio H. Paulino,et al. Polygonal finite elements for finite elasticity , 2015 .
[2] Chandrajit L. Bajaj,et al. Construction of Scalar and Vector Finite Element Families on Polygonal and Polyhedral Meshes , 2014, Comput. Methods Appl. Math..
[3] Ahmed Alsaedi,et al. Equivalent projectors for virtual element methods , 2013, Comput. Math. Appl..
[4] Michael S. Floater,et al. Mean value coordinates , 2003, Comput. Aided Geom. Des..
[5] Amir R. Khoei,et al. A polygonal finite element method for modeling arbitrary interfaces in large deformation problems , 2012 .
[6] Alexandre Ern,et al. An edge-based scheme on polyhedral meshes for vector advection-reaction equations , 2017 .
[7] Joseph E. Bishop,et al. A Finite-Element Method For Modeling Fluid-Pressure Induced Discrete-Fracture Propagation Using Random Meshes , 2012 .
[8] Glaucio H. Paulino,et al. Topology optimization using polytopes , 2013, 1312.7016.
[9] Glaucio H. Paulino,et al. Unstructured polygonal meshes with adaptive refinement for the numerical simulation of dynamic cohesive fracture , 2014, International Journal of Fracture.
[10] Eugene L. Wachspress,et al. Barycentric coordinates for polytopes , 2011, Comput. Math. Appl..
[11] Paul C. Duffell,et al. TESS: A RELATIVISTIC HYDRODYNAMICS CODE ON A MOVING VORONOI MESH , 2011, 1104.3562.
[12] Raducanu Razvan,et al. MATHEMATICAL MODELS and METHODS in APPLIED SCIENCES , 2012 .
[13] D. Copeland. Boundary-Element-Based Finite Element Methods for Helmholtz and Maxwell Equations on General Polyhedral Meshes , 2009 .
[14] A. Ern,et al. A Hybrid High-Order method for the incompressible Navier-Stokes equations based on Temam's device , 2018, J. Comput. Phys..
[15] L. D. Marini,et al. Lowest order Virtual Element approximation of magnetostatic problems , 2017, 1710.01888.
[16] E. Shurina,et al. Modified multiscale discontinuous Galerkin method in the function space H(curl) , 2016, 2016 13th International Scientific-Technical Conference on Actual Problems of Electronics Instrument Engineering (APEIE).
[17] Sang Yong Lee,et al. Polyhedral Mesh Generation and A Treatise on Concave Geometrical Edges , 2015 .
[18] L. Beirao da Veiga,et al. Divergence free Virtual Elements for the Stokes problem on polygonal meshes , 2015, 1510.01655.
[19] Markus H. Gross,et al. A Finite Element Method on Convex Polyhedra , 2007, Comput. Graph. Forum.
[20] Glaucio H. Paulino,et al. Some basic formulations of the virtual element method (VEM) for finite deformations , 2017 .
[21] F. Brezzi,et al. Basic principles of Virtual Element Methods , 2013 .
[22] Matteo Bruggi,et al. On the virtual element method for topology optimization on polygonal meshes: A numerical study , 2016, Comput. Math. Appl..
[23] Alexandre Ern,et al. Analysis of Compatible Discrete Operator Schemes for the Stokes Equations on Polyhedral Meshes , 2014, ArXiv.
[24] Ronald H. W. Hoppe,et al. Finite element methods for Maxwell's equations , 2005, Math. Comput..
[25] Junping Wang,et al. Interior penalty discontinuous Galerkin method on very general polygonal and polyhedral meshes , 2012, J. Comput. Appl. Math..
[26] Lourenço Beirão da Veiga,et al. H(div)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H({\text {div}})$$\end{document} and H(curl)\documentclass[12pt] , 2015, Numerische Mathematik.