Speeding Up Topology Optimization of Compliant Mechanisms With a Pseudorigid-Body Model

[1]  Hai-Jun Su,et al.  A general and efficient multiple segment method for kinetostatic analysis of planar compliant mechanisms , 2017 .

[2]  Hai-Jun Su,et al.  Pseudo-rigid-body models for circular beams under combined tip loads , 2016 .

[3]  Hai-Jun Su,et al.  A Three-Spring Pseudorigid-Body Model for Soft Joints With Significant Elongation Effects , 2016 .

[4]  Hai-Jun Su,et al.  Compliant Mechanism Design Through Topology Optimization Using Pseudo-Rigid-Body Models , 2016 .

[5]  Hai-Jun Su,et al.  DAS-2D: a concept design tool for compliant mechanisms , 2016 .

[6]  Hai-Jun Su,et al.  A parameter optimization framework for determining the pseudo-rigid-body model of cantilever-beams , 2015 .

[7]  Xianmin Zhang,et al.  Design of Compliant Mechanisms Using a Pseudo-Rigid-Body Model Based Topology Optimization Method , 2014 .

[8]  Hai-Jun Su,et al.  A Unified Kinetostatic Analysis Framework for Planar Compliant and Rigid Body Mechanisms , 2014 .

[9]  Larry L. Howell,et al.  Handbook of compliant mechanisms , 2013 .

[10]  Hong Zhou,et al.  Topology Optimization of Compliant Mechanisms Using the Improved Quadrilateral Discretization Model , 2012 .

[11]  J. Dai,et al.  Topology and kinematic performance analysis of Hoeken straight-line COPMM for micro-operation , 2011 .

[12]  M. Bendsøe,et al.  Topology Optimization: "Theory, Methods, And Applications" , 2011 .

[13]  Jonathan B. Hopkins,et al.  Synthesis of multi-degree of freedom, parallel flexure system concepts via freedom and constraint topology (FACT). Part II: Practice , 2010 .

[14]  Judy M. Vance,et al.  A Screw Theory Approach for the Conceptual Design of Flexible Joints for Compliant Mechanisms , 2009 .

[15]  Kusum Deep,et al.  A real coded genetic algorithm for solving integer and mixed integer optimization problems , 2009, Appl. Math. Comput..

[16]  Hai-Jun Su,et al.  A Pseudorigid-Body 3R Model for Determining Large Deflection of Cantilever Beams Subject to Tip Loads , 2009 .

[17]  Just L. Herder,et al.  Synthesis Methods in Compliant Mechanisms: An Overview , 2009 .

[18]  Charles Kim,et al.  A Building Block Approach to the Conceptual Synthesis of Compliant Mechanisms Utilizing Compliance and Stiffness Ellipsoids , 2008 .

[19]  Michael Yu Wang,et al.  Shape and topology optimization of compliant mechanisms using a parameterization level set method , 2007, J. Comput. Phys..

[20]  Raymond Greenlaw,et al.  Graph Theory: Modeling, Applications, and Algorithms , 2006 .

[21]  Jian S. Dai,et al.  Compliance Analysis of a Three-Legged Rigidly-Connected Platform Device , 2006 .

[22]  Kwun-Lon Ting,et al.  Topological Synthesis of Compliant Mechanisms Using Spanning Tree Theory , 2005 .

[23]  Ronald S. Fearing,et al.  Flexure Design Rules for Carbon Fiber Microrobotic Mechanisms , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[24]  Ozgur Yeniay Penalty Function Methods for Constrained Optimization with Genetic Algorithms , 2005 .

[25]  Larry L. Howell,et al.  The modeling of cross-axis flexural pivots , 2002 .

[26]  G. K. Ananthasuresh,et al.  Topology Synthesis of Compliant Mechanisms for Nonlinear Force-Deflection and Curved Path Specifications , 2001 .

[27]  Noboru Kikuchi,et al.  TOPOLOGY OPTIMIZATION OF COMPLIANT MECHANISMS USING THE HOMOGENIZATION METHOD , 1998 .

[28]  Mary Frecker,et al.  Topological synthesis of compliant mechanisms using multi-criteria optimization , 1997 .

[29]  Ole Sigmund,et al.  On the Design of Compliant Mechanisms Using Topology Optimization , 1997 .

[30]  Zbigniew Michalewicz,et al.  Evolutionary Algorithms for Constrained Parameter Optimization Problems , 1996, Evolutionary Computation.

[31]  Christopher R. Houck,et al.  On the use of non-stationary penalty functions to solve nonlinear constrained optimization problems with GA's , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[32]  Larry L. Howell,et al.  A Method for the Design of Compliant Mechanisms With Small-Length Flexural Pivots , 1994 .

[33]  Alex Pothen,et al.  Computing the block triangular form of a sparse matrix , 1990, TOMS.