Robust Controller Synthesis in Automatic Guided Vehicles Applications

Abstract We have been interested in Automatic Guided Vehicles (AGV) for several years. In this paper, we synthesize controllers for AGV applications. Particularly, we are interested in road following and direction change tasks, and in analyzing the influence of roll and pitch perturbations on vehicle behaviour. We use the bicycle as the kinematic vehicle model, and we choose the white band position of the road as the sensor signal. We define an interaction between the camera, which is mounted inside the vehicle, and the white band detected in the image space. Using this kind of interaction, we present how to use a pole assignment technique to solve the servoing task. We show the simulation and experimental resul ts (1/10 scale demonstrator) with and without perturbations. Then, we investigate in robust controller to slow down the effect of perturbations on the vehicle behaviour.

[1]  Takeo Kanade,et al.  Progress in robot road-following , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[2]  G. Zames,et al.  Feedback, minimax sensitivity, and optimal robustness , 1983 .

[3]  Raymond H. Byrne,et al.  Robust lateral control of highway vehicles , 1994, Proceedings of the Intelligent Vehicles '94 Symposium.

[4]  Patrick Rives,et al.  Vision Based Control Approach to High Speed Automatic Vehicle Guidance , 1992, MVA.

[5]  Patrick Rives,et al.  Asservissement visuel applique a un robot mobile : etat de l'art et modelisation cinematique , 1991 .

[6]  D. C. Youla,et al.  Interpolation with positive real functions , 1967 .

[7]  Peter I. Corke,et al.  A tutorial on visual servo control , 1996, IEEE Trans. Robotics Autom..

[8]  Peter Dorato,et al.  A modification of the classical Nevanlinna-Pick interpolation algorithm with applications to robust stabilization , 1986 .

[9]  Claude Samson,et al.  Robot Control: The Task Function Approach , 1991 .

[10]  P. Khargonekar,et al.  State-space solutions to standard H/sub 2/ and H/sub infinity / control problems , 1989 .

[11]  Patrick Rives,et al.  A new approach to visual servoing in robotics , 1992, IEEE Trans. Robotics Autom..

[12]  H. Kimura Robust stabilizability for a class of transfer functions , 1983, The 22nd IEEE Conference on Decision and Control.

[13]  P. Khargonekar,et al.  State-space solutions to standard H2 and H∞ control problems , 1988, 1988 American Control Conference.

[14]  Philippe Martinet,et al.  Linear Control of High Speed Vehicle in Image Space , 1995 .

[15]  Philippe Martinet,et al.  A Versatile Parallel Architecture for Visual Servoing Applications , 1993 .

[16]  Larry S. Davis,et al.  A visual navigation system for autonomous land vehicles , 1987, IEEE J. Robotics Autom..

[17]  E D Dickmanns,et al.  AUTONOMOUS HIGH SPEED ROAD VEHICLE GUIDANCE BY COMPUTER VISION , 1987 .

[18]  Nasser Kehtarnavaz,et al.  Visual control of an autonomous vehicle (BART)-the vehicle-following problem , 1991 .

[19]  Takeo Kanade,et al.  Vision and control techniques for robotic visual tracking , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[20]  Frédéric Chausse,et al.  Real-Time Vehicle Trajectory Supervision on the Highway , 1995, Int. J. Robotics Res..

[21]  Patrick Rives,et al.  HIGH-SPEED VEHICLE GUIDANCE BASED ON VISION , 1993 .

[22]  Giovanni Muscato,et al.  Robust Control for Unstructured Perturbations-An Introduction , 1992 .

[23]  Takeo Kanade,et al.  Visual tracking of a moving target by a camera mounted on a robot: a combination of control and vision , 1993, IEEE Trans. Robotics Autom..

[24]  Philippe Martinet,et al.  Visual servoing in robotics scheme using a camera/laser-stripe sensor , 1996, IEEE Trans. Robotics Autom..

[25]  Philippe Martinet,et al.  Controller Synthesis Applied to Automatic Guided Vehicles , 1997 .