Bi‐directional modulation of somatosensory mismatch negativity with transcranial direct current stimulation: an event related potential study

Sensory mismatch negativity is impaired in patients with cerebellar lesions, suggesting that the cerebellum may play an important role in this form of sensory processing. Anodal transcranial direct current stimulation over the right cerebellar hemisphere increased the amplitude of sensory mismatch negativity to stimuli delivered to the right hand while cathodal transcranial direct current stimulation reduced it. The cerebellum appears to be an important node in the network mediating sensory mismatch negativity, and tDCS is a useful method with which to manipulate sensory mismatch negativity for experimental studies.

[1]  D. Purpura,et al.  INTRACELLULAR ACTIVITIES AND EVOKED POTENTIAL CHANGES DURING POLARIZATION OF MOTOR CORTEX. , 1965, Journal of neurophysiology.

[2]  R. Näätänen,et al.  Auditory frequency discrimination and event-related potentials. , 1985, Electroencephalography and clinical neurophysiology.

[3]  C. C. Wood,et al.  Scalp distributions of event-related potentials: an ambiguity associated with analysis of variance models. , 1985, Electroencephalography and clinical neurophysiology.

[4]  K. Reinikainen,et al.  Mismatch negativity to change in spatial location of an auditory stimulus. , 1989, Electroencephalography and clinical neurophysiology.

[5]  Wolfgang Teder,et al.  Auditory attention and selective input modulation: A topographical ERP study , 1992, Neuroreport.

[6]  R. Näätänen,et al.  Intermodal selective attention. II. Effects of attentional load on processing of auditory and visual stimuli in central space. , 1992, Electroencephalography and clinical neurophysiology.

[7]  M. Tervaniemi,et al.  Neural representations of abstract stimulus features in the human brain as reflected by the mismatch negativity. , 1994, Neuroreport.

[8]  K. Reinikainen,et al.  Rate effect and mismatch responses in the somatosensory system: ERP-recordings in humans , 1997, Biological Psychology.

[9]  H. Yabe,et al.  Temporal window of integration revealed by MMN to sound omission , 1997, Neuroreport.

[10]  H. Yabe,et al.  Somatosensory automatic responses to deviant stimuli. , 1998, Brain research. Cognitive brain research.

[11]  T. Baldeweg,et al.  Impaired auditory frequency discrimination in dyslexia detected with mismatch evoked potentials , 1999, Annals of neurology.

[12]  D. Javitt,et al.  Ketamine-induced deficits in auditory and visual context-dependent processing in healthy volunteers: implications for models of cognitive deficits in schizophrenia. , 2000, Archives of general psychiatry.

[13]  J. Karhu,et al.  Anticipatory cerebellar responses during somatosensory omission in man , 2000, Human brain mapping.

[14]  M. Molinari,et al.  Functional changes of the primary somatosensory cortex in patients with unilateral cerebellar lesions. , 2001, Brain : a journal of neurology.

[15]  Franz X Vollenweider,et al.  Mismatch negativity predicts psychotic experiences induced by nmda receptor antagonist in healthy volunteers , 2002, Biological Psychiatry.

[16]  Karl J. Friston,et al.  Dynamic causal modelling , 2003, NeuroImage.

[17]  Hans Stassen,et al.  How specific are deficits in mismatch negativity generation to schizophrenia? , 2003, Biological Psychiatry.

[18]  A. Dale,et al.  Human posterior auditory cortex gates novel sounds to consciousness. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[19]  T. Baldeweg,et al.  Mismatch negativity potentials and cognitive impairment in schizophrenia , 2004, Schizophrenia Research.

[20]  John J. Foxe,et al.  The neural circuitry of pre-attentive auditory change-detection: an fMRI study of pitch and duration mismatch negativity generators. , 2005, Cerebral cortex.

[21]  Koji Inui,et al.  Mismatch responses related to temporal discrimination of somatosensory stimulation , 2005, Clinical Neurophysiology.

[22]  I. Winkler,et al.  Memory-based or afferent processes in mismatch negativity (MMN): a review of the evidence. , 2005, Psychophysiology.

[23]  S. G. Boyd,et al.  Effects of stimulus frequency and duration on somatosensory discrimination responses , 2007, Experimental Brain Research.

[24]  Domenico Restuccia,et al.  Cerebellar damage impairs detection of somatosensory input changes. A somatosensory mismatch-negativity study. , 2006, Brain : a journal of neurology.

[25]  R. Näätänen,et al.  The mismatch negativity (MMN) in basic research of central auditory processing: A review , 2007, Clinical Neurophysiology.

[26]  S. Kähkönen,et al.  Effects of NMDA receptor antagonist memantine on mismatch negativity , 2007, Brain Research Bulletin.

[27]  B. de Gelder,et al.  Mismatch negativity predicts recovery from the vegetative state , 2007, Clinical Neurophysiology.

[28]  Karl J. Friston,et al.  Dynamic causal modelling of evoked potentials: A reproducibility study , 2007, NeuroImage.

[29]  Sara Marceglia,et al.  Cerebellar Transcranial Direct Current Stimulation Impairs the Practice-dependent Proficiency Increase in Working Memory , 2008, Journal of Cognitive Neuroscience.

[30]  Karl J. Friston,et al.  The functional anatomy of the MMN: A DCM study of the roving paradigm , 2008, NeuroImage.

[31]  P. Celnik,et al.  Modulation of Cerebellar Excitability by Polarity-Specific Noninvasive Direct Current Stimulation , 2009, The Journal of Neuroscience.

[32]  Karl J. Friston,et al.  The mismatch negativity: A review of underlying mechanisms , 2009, Clinical Neurophysiology.

[33]  D. Restuccia,et al.  Somatosensory mismatch negativity in healthy children , 2009, Developmental medicine and child neurology.

[34]  S. G. Boyd,et al.  Somatosensory discrimination: An intracranial event-related potential study of children with refractory epilepsy , 2010, Brain Research.

[35]  P. Celnik,et al.  Dissociating the roles of the cerebellum and motor cortex during adaptive learning: the motor cortex retains what the cerebellum learns. , 2011, Cerebral cortex.

[36]  John J. Foxe,et al.  Common or Redundant Neural Circuits for Duration Processing across Audition and Touch , 2011, The Journal of Neuroscience.

[37]  Masashi Hamada,et al.  Cerebellar modulation of human associative plasticity , 2012, The Journal of physiology.

[38]  Mark Hallett,et al.  Cerebellum and processing of negative facial emotions: Cerebellar transcranial DC stimulation specifically enhances the emotional recognition of facial anger and sadness , 2012, Cognition & emotion.

[39]  I. Hickie,et al.  Reduced mismatch negativity in mild cognitive impairment: associations with neuropsychological performance. , 2012, Journal of Alzheimer's disease : JAD.

[40]  J. Rothwell,et al.  Adaptation of surround inhibition in the human motor system , 2012, Experimental Brain Research.

[41]  John J. Foxe,et al.  Multisensory Representation of Frequency across Audition and Touch: High Density Electrical Mapping Reveals Early Sensory-Perceptual Coupling , 2012, The Journal of Neuroscience.

[42]  Axel Lindner,et al.  The Cerebellum Optimizes Perceptual Predictions about External Sensory Events , 2013, Current Biology.

[43]  Yung-Yang Lin,et al.  Effects of physiological aging on mismatch negativity: a meta-analysis. , 2013, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[44]  M. J. Edwards,et al.  Domain-specific suppression of auditory mismatch negativity with transcranial direct current stimulation , 2014, Clinical Neurophysiology.