Hv1 Proton Channels in Dinoflagellates: Not Just for Bioluminescence?

Bioluminescence in dinoflagellates is controlled by HV1 proton channels. Database searches of dinoflagellate transcriptomes and genomes yielded hits with sequence features diagnostic of all confirmed HV1, and show that HV1 is widely distributed in the dinoflagellate phylogeny including the basal species Oxyrrhis marina. Multiple sequence alignments followed by phylogenetic analysis revealed three major subfamilies of HV1 that do not correlate with presence of theca, autotrophy, geographic location, or bioluminescence. These data suggest that most dinoflagellates express a HV1 which has a function separate from bioluminescence. Sequence evidence also suggests that dinoflagellates can contain more than one HV1 gene.

[1]  A. Place,et al.  Identification of a vacuolar proton channel that triggers the bioluminescent flash in dinoflagellates , 2017, PloS one.

[2]  C. Delwiche,et al.  Major transitions in dinoflagellate evolution unveiled by phylotranscriptomics , 2016, Proceedings of the National Academy of Sciences.

[3]  S. Baumgarten,et al.  Genomes of coral dinoflagellate symbionts highlight evolutionary adaptations conducive to a symbiotic lifestyle , 2016, Scientific Reports.

[4]  T. DeCoursey,et al.  Insights into the structure and function of HV1 from a meta-analysis of mutation studies , 2016, The Journal of general physiology.

[5]  Johannes Söding,et al.  The MPI bioinformatics Toolkit as an integrative platform for advanced protein sequence and structure analysis , 2016, Nucleic Acids Res..

[6]  C. Derst,et al.  Identification of an HV1 voltage‐gated proton channel in insects , 2016, The FEBS journal.

[7]  Huanming Yang,et al.  The Symbiodinium kawagutii genome illuminates dinoflagellate gene expression and coral symbiosis , 2015, Science.

[8]  C. Lim,et al.  Selectivity Mechanism of the Voltage-gated Proton Channel, HV1 , 2015, Scientific Reports.

[9]  J. Gribben,et al.  Enhanced activation of an amino-terminally truncated isoform of the voltage-gated proton channel HVCN1 enriched in malignant B cells , 2014, Proceedings of the National Academy of Sciences.

[10]  Y. Okamura,et al.  X-ray crystal structure of voltage-gated proton channel , 2014, Nature Structural &Molecular Biology.

[11]  Christoph Heinze,et al.  Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models , 2013 .

[12]  Martha Valiadi,et al.  Understanding Bioluminescence in Dinoflagellates—How Far Have We Come? , 2013, Microorganisms.

[13]  S. Sugano,et al.  Draft Assembly of the Symbiodinium minutum Nuclear Genome Reveals Dinoflagellate Gene Structure , 2013, Current Biology.

[14]  T. DeCoursey Voltage-gated proton channels: molecular biology, physiology, and pathophysiology of the H(V) family. , 2013, Physiological Reviews.

[15]  Régis Pomès,et al.  Construction and validation of a homology model of the human voltage-gated proton channel hHV1 , 2013, The Journal of general physiology.

[16]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[17]  K. Jakobsen,et al.  When Naked Became Armored: An Eight-Gene Phylogeny Reveals Monophyletic Origin of Theca in Dinoflagellates , 2012, PloS one.

[18]  Anna R. Panchenko,et al.  SPEER-SERVER: a web server for prediction of protein specificity determining sites , 2012, Nucleic Acids Res..

[19]  A. Place,et al.  Voltage-gated proton channel in a dinoflagellate , 2011, Proceedings of the National Academy of Sciences.

[20]  T. DeCoursey,et al.  Aspartate112 is the Selectivity Filter of the Human Voltage Gated Proton Channel , 2011, Nature.

[21]  C. Brownlee,et al.  A Voltage-Gated H+ Channel Underlying pH Homeostasis in Calcifying Coccolithophores , 2011, PLoS biology.

[22]  Robert D. Finn,et al.  HMMER web server: interactive sequence similarity searching , 2011, Nucleic Acids Res..

[23]  Xiao Tao,et al.  A Gating Charge Transfer Center in Voltage Sensors , 2010, Science.

[24]  O. Gascuel,et al.  SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. , 2010, Molecular biology and evolution.

[25]  Toni Gabaldón,et al.  trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses , 2009, Bioinform..

[26]  O. Gascuel,et al.  An improved general amino acid replacement matrix. , 2008, Molecular biology and evolution.

[27]  G. Crooks,et al.  WebLogo: a sequence logo generator. , 2004, Genome research.

[28]  O. Gascuel,et al.  A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. , 2003, Systematic biology.

[29]  John P. Huelsenbeck,et al.  MrBayes 3: Bayesian phylogenetic inference under mixed models , 2003, Bioinform..

[30]  Jonathan P. Bollback,et al.  Bayesian Inference of Phylogeny and Its Impact on Evolutionary Biology , 2001, Science.

[31]  V. Markin,et al.  The voltage-activated hydrogen ion conductance in rat alveolar epithelial cells is determined by the pH gradient , 1995, The Journal of general physiology.

[32]  D. Morse,et al.  The polypeptide components of scintillons, the bioluminescence organelles of the dinoflagellate Gonyaulax polyedra. , 1993, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[33]  T. D. Schneider,et al.  Sequence logos: a new way to display consensus sequences. , 1990, Nucleic acids research.

[34]  J. W. Hastings,et al.  Role of a luciferin-binding protein in the circadian bioluminescent reaction of Gonyaulax polyedra. , 1989, The Journal of biological chemistry.

[35]  J. W. Hastings,et al.  Characterization of the bioluminescent organelles in Gonyaulax polyedra (dinoflagellates) after fast-freeze fixation and antiluciferase immunogold staining , 1987, The Journal of cell biology.

[36]  J. W. Hastings,et al.  The ultrastructural localization of luciferase in three bioluminescent dinoflagellates, two species of Pyrocystis, and Noctiluca, using anti-luciferase and immunogold labelling. , 1987, Journal of cell science.

[37]  J. W. Hastings,et al.  Compartmentalization of algal bioluminescence: autofluorescence of bioluminescent particles in the dinoflagellate Gonyaulax as studied with image-intensified video microscopy and flow cytometry , 1985, The Journal of cell biology.

[38]  B. Arrio,et al.  Dinoflagellate luciferases: purification of luciferases from Gonyaulax polyedra, Pyrocystis lunula, and Pyrocystis fusiformis. , 1979, Archives of biochemistry and biophysics.

[39]  T. Sibaoka,et al.  Coupling between action potential and bioluminescence inNoctiluca: Effects of inorganic ions and pH in vacuolar sap , 1979, Journal of comparative physiology.

[40]  J. W. Hastings,et al.  Dinoflagellate bioluminescence: A comparative study of invitro components , 1976, Journal of cellular physiology.

[41]  J. W. Hastings,et al.  Bioluminescence: mechanism and mode of control of scintillon activity. , 1972, Proceedings of the National Academy of Sciences of the United States of America.

[42]  R. Eckert,et al.  The Subcellular Origin of Bioluminescence in Noctiluca miliaris , 1967, The Journal of general physiology.

[43]  C. Delwiche,et al.  Dinoflagellate phylogeny revisited: using ribosomal proteins to resolve deep branching dinoflagellate clades. , 2014, Molecular phylogenetics and evolution.

[44]  R. Pomès,et al.  Construction and validation of a homology model of the human voltage-gated proton channel hHV 1 , 2013 .

[45]  Peer Bork,et al.  Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation , 2007, Bioinform..

[46]  J. W. Hastings,et al.  [28] Cell-free components in dinoflagellate bioluminescence. The particulate activity: Scintillons; the soluble components: Luciferase, luciferin, and luciferin-binding protein , 1986 .