Geodesy of irregular small bodies via neural density fields

[1]  H. Schaub,et al.  Physics-informed neural networks for gravity field modeling of the Earth and Moon , 2022, Celestial Mechanics and Dynamical Astronomy.

[2]  M. Lavagna,et al.  Small bodies non-uniform gravity field on-board learning through Hopfield Neural Networks , 2022, Planetary and Space Science.

[3]  G. Boué,et al.  Ellipsoidal equilibrium figure and Cassini states of rotating planets and satellites deformed by a tidal potential in the spatial case , 2021, Celestial Mechanics and Dynamical Astronomy.

[4]  R. Dahlstrom,et al.  Challenges and opportunities , 2021, Foundations of a Sustainable Economy.

[5]  W. Herbst,et al.  The Macroporosity of Rubble Pile Asteroid Ryugu and Implications for the Origin of Chondrules , 2021, 2104.06484.

[6]  Jonathan T. Barron,et al.  Nerfies: Deformable Neural Radiance Fields , 2020, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[7]  Nicholas Zabaras,et al.  Solving inverse problems using conditional invertible neural networks , 2020, J. Comput. Phys..

[8]  Luca Fanucci,et al.  Towards the Use of Artificial Intelligence on the Edge in Space Systems: Challenges and Opportunities , 2020, IEEE Aerospace and Electronic Systems Magazine.

[9]  Jonathan T. Barron,et al.  Deformable Neural Radiance Fields , 2020, ArXiv.

[10]  M. Moreau,et al.  Heterogeneous mass distribution of the rubble-pile asteroid (101955) Bennu , 2020, Science Advances.

[11]  Andreas Geiger,et al.  GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis , 2020, NeurIPS.

[12]  Gordon Wetzstein,et al.  Implicit Neural Representations with Periodic Activation Functions , 2020, NeurIPS.

[13]  J. Barriot,et al.  A simulated global GM estimate of the asteroid 469219 Kamo‘oalewa for China’s future asteroid mission , 2020 .

[14]  Pratul P. Srinivasan,et al.  NeRF , 2020, ECCV.

[15]  Jihan Kim,et al.  Inverse design of porous materials using artificial neural networks , 2019, Science Advances.

[16]  Andreas M. Hein,et al.  A techno-economic analysis of asteroid mining , 2018, Acta Astronautica.

[17]  Ovidiu Calin,et al.  Deep Learning Architectures , 2020, Springer Series in the Data Sciences.

[18]  O. Calin Universal Approximators , 2020, Deep Learning Architectures.

[19]  S. Sasaki,et al.  Density distribution of asteroid 25143 Itokawa based on smooth terrain shape , 2019, Planetary and Space Science.

[20]  Ryan P. Russell,et al.  Mixed-model gravity representations for small celestial bodies using mascons and spherical harmonics , 2019, Celestial Mechanics and Dynamical Astronomy.

[21]  R. Jaumann,et al.  Hayabusa2 arrives at the carbonaceous asteroid 162173 Ryugu—A spinning top–shaped rubble pile , 2019, Science.

[22]  Eric Darve,et al.  The Neural Network Approach to Inverse Problems in Differential Equations , 2019, 1901.07758.

[23]  Yoshua Bengio,et al.  On the Spectral Bias of Neural Networks , 2018, ICML.

[24]  Marion Semmler,et al.  Laryngeal Pressure Estimation With a Recurrent Neural Network , 2019, IEEE Journal of Translational Engineering in Health and Medicine.

[25]  Antti Näsilä,et al.  European component of the AIDA mission to a binary asteroid: Characterization and interpretation of the impact of the DART mission , 2018, Advances in Space Research.

[26]  Chris Welch,et al.  Asteroid mining with small spacecraft and its economic feasibility , 2018, 1808.05099.

[27]  Michael Küppers,et al.  The Hera mission: European component of the ESA-NASA AIDA mission to a binary asteroid , 2018 .

[28]  Koray Kavukcuoglu,et al.  Neural scene representation and rendering , 2018, Science.

[29]  E. Beshore,et al.  OSIRIS-REx: Sample Return from Asteroid (101955) Bennu , 2017, Space Science Reviews.

[30]  M. Kuhn,et al.  Convergence and divergence in spherical harmonic series of the gravitational field generated by high‐resolution planetary topography—A case study for the Moon , 2017 .

[31]  A. Hubault,et al.  The final year of the Rosetta mission , 2017 .

[32]  Damon Landau,et al.  Psyche: Journey to a metal world , 2017, 2017 IEEE Aerospace Conference.

[33]  M. K. Crombie,et al.  OSIRIS-REx: Sample Return from Asteroid (101955) Bennu , 2017, Space Science Reviews.

[34]  H. C. Connolly,et al.  Chondrules: The canonical and noncanonical views , 2016 .

[35]  A. Bezděk,et al.  Spheroidal models of the exterior gravitational field of Asteroids Bennu and Castalia , 2016 .

[36]  Dan Negrut,et al.  On the Importance of Displacement History in Soft-Body Contact Models , 2016 .

[37]  Nitin Arora,et al.  Efficient Interpolation of High-Fidelity Geopotentials , 2016 .

[38]  Hang Si,et al.  TetGen, a Delaunay-Based Quality Tetrahedral Mesh Generator , 2015, ACM Trans. Math. Softw..

[39]  U. Fink,et al.  The organic-rich surface of comet 67P/Churyumov-Gerasimenko as seen by VIRTIS/Rosetta , 2015, Science.

[40]  David Moloney,et al.  Myriad 2: Eye of the computational vision storm , 2014, 2014 IEEE Hot Chips 26 Symposium (HCS).

[41]  D. Scheeres,et al.  Small body surface gravity fields via spherical harmonic expansions , 2014 .

[42]  A. Fitzsimmons,et al.  The internal structure of asteroid (25143) Itokawa as revealed by detection of YORP spin-up , 2014 .

[43]  P. Tricarico Global gravity inversion of bodies with arbitrary shape , 2013, 1307.1669.

[44]  Daniel J. Scheeres,et al.  Surface Gravity Fields for Asteroids and Comets , 2013 .

[45]  M. D'Urso Analytical computation of gravity effects for polyhedral bodies , 2013, Journal of Geodesy.

[46]  Nitin Arora,et al.  Global Point Mascon Models for Simple, Accurate, and Parallel Geopotential Computation , 2012 .

[47]  V. Michel,et al.  On Mathematical Aspects of a Combined Inversion of Gravity and Normal Mode Variations by a Spline Method , 2010 .

[48]  Junichiro Kawaguchi,et al.  Vision-based guidance, navigation, and control of Hayabusa spacecraft - Lessons learned from real operation - , 2010 .

[49]  R. Park,et al.  Estimating Small-Body Gravity Field from Shape Model and Navigation Data , 2008 .

[50]  K. Glassmeier,et al.  The Rosetta Mission: Flying Towards the Origin of the Solar System , 2007 .

[51]  J. Kawaguchi,et al.  The Rubble-Pile Asteroid Itokawa as Observed by Hayabusa , 2006, Science.

[52]  Kazuya Yoshida,et al.  Touchdown of the Hayabusa Spacecraft at the Muses Sea on Itokawa , 2006, Science.

[53]  Y. Ricard,et al.  RESEARCH NOTE: Empirical 3-D basis for the internal density of a planet , 2005 .

[54]  M. Watkins,et al.  GRACE Measurements of Mass Variability in the Earth System , 2004, Science.

[55]  Rune Floberghagen,et al.  VII: CLOSING SESSION: GOCE: ESA's First Earth Explorer Core Mission , 2003 .

[56]  S. Ross Near-Earth Asteroid Mining , 2002 .

[57]  Li,et al.  NEAR at eros: imaging and spectral results , 2000, Science.

[58]  P. Visser Gravity field determination with GOCE and GRACE , 1999 .

[59]  R. Caflisch Monte Carlo and quasi-Monte Carlo methods , 1998, Acta Numerica.

[60]  Tomas Akenine-Möller,et al.  Fast, Minimum Storage Ray-Triangle Intersection , 1997, J. Graphics, GPU, & Game Tools.

[61]  D. Scheeres,et al.  Exterior gravitation of a polyhedron derived and compared with harmonic and mascon gravitation representations of asteroid 4769 Castalia , 1996 .

[62]  D. A. Cicci Improving gravity field determination in ill-conditioned inverse problems , 1992 .

[63]  M. K. Paul The gravity effect of a homogeneous polyhedron for three-dimensional interpretation , 1974 .