A critical review of the biomechanical stress analysis of the human femur.

The objective of this paper is to present a critical review of the mechanical behaviour of the human femur with particular emphasis on the determination of the internal stress distribution under the action of a variety of forces resulting from daily living activities. For attaining such a goal, knowledge of the applied forces in combination with the internal structure and the mechanical properties of the material of the femur is needed. The whole work is divided into four parts. In the first two parts a brief description of the structure and the mechanical properties of the cortical and cancellous bones of the femur determined from the tension, compression, shear, bending, torsion and impact tests takes place. The third part deals with the analysis of the joint and muscle forces acting on the femur. In the fourth part the mathematical and experimental methods for the determination of the stress distribution in the femur are presented in detail. The mathematical methods include use of the beam theory and finite elements, while the experimental methods incorporate the brittle and photoelastic coatings, the strain gauges and the two- and three-dimensional photoelasticity. Finally, an analysis of the strength characteristics of the femur from the point of view of fracture mechanics is undertaken.

[1]  G Piotrowski,et al.  The stress program: a computer program for the analysis of stresses in long bones. , 1971, Journal of biomechanics.

[2]  H. R. Lissner,et al.  Deformation studies of the femur under dynamic vertical loading , 1948, The Anatomical record.

[3]  F. G. Evans,et al.  Methods of studying the biomechanical significance of bone form. , 1953, American journal of physical anthropology.

[4]  E Y Chao,et al.  Three-dimensional force analysis of finger joints in selected isometric hand functions. , 1976, Journal of biomechanics.

[5]  W. Hayes,et al.  The fracture mechanics of fatigue crack propagation in compact bone. , 1976, Journal of biomedical materials research.

[6]  W. Bonfield,et al.  Impact fracture of compact bone in a shock tube , 1974 .

[7]  Herbert Elftman,et al.  FORCES AND ENERGY CHANGES IN THE LEG DURING WALKING , 1939 .

[8]  F. G. Evans,et al.  Strength of biological materials , 1970 .

[9]  N Berme,et al.  Determination of the transverse elastic coefficients of bone. , 1977, Journal of biomechanics.

[10]  W. Hoover Crack Initiation in B-Al Composites , 1976 .

[11]  K. Piekarski,et al.  Fracture of Bone , 1970 .

[12]  J. Katz Hard tissue as a composite material. I. Bounds on the elastic behavior. , 1971, Journal of biomechanics.

[13]  J. P. Paul,et al.  Load actions on the human femur in walking and some resultant stresses , 1971 .

[14]  J. Wolff Das Gesetz der Transformation der Knochen , 1893 .

[15]  W C Hayes,et al.  Fracture mechanics parameters for compact bone--effects of density and specimen thickness. , 1977, Journal of biomechanics.

[16]  Anisotropic analysis of bone--some two-dimensional problems. , 1973, Journal of biomechanics.

[17]  A H Burstein,et al.  The ultimate properties of bone tissue: the effects of yielding. , 1972, Journal of biomechanics.

[18]  R. Young,et al.  Crack velocity and the fracture of bone. , 1978, Journal of biomechanics.

[19]  W. J. Baer,et al.  EIN 16 BIT MIKROPROZESSOR DER 3. GENERATION;TMS9900 AUS DER 990-COMPUTERFAMILIE VON TEXAS INSTRUMENTS , 1976 .

[20]  T P Andriacchi,et al.  Three dimensional stress analysis of the femoral stem of a total hip prosthesis. , 1980, Journal of biomechanics.

[21]  J O Outwater,et al.  Mechanical properties of bone as a function of position and orientation. , 1974, Journal of biomechanics.

[22]  F. G. Evans,et al.  “Stresscoat” deformation studies of the human femur under transverse loading , 1953, The Anatomical record.

[23]  Malcolm H. Pope,et al.  The fracture characteristics of bone substance , 1972 .

[24]  T. Toridis,et al.  Stress analysis of the femur. , 1969, Journal of biomechanics.

[25]  M Martens,et al.  Aging of bone tissue: mechanical properties. , 1976, The Journal of bone and joint surgery. American volume.

[26]  A. Burstein,et al.  The elastic modulus for bone. , 1974, Journal of biomechanics.

[27]  H. R. Lissner,et al.  Mechanism of Head Injury as Studied by the Cathode Ray Oscilloscope , 1945 .

[28]  C. Sorbie,et al.  BIO-ENGINEERING STUDIES OF THE FORCES TRANSMITTED BY JOINTS: (I) The Phasic Relationship of the Hip Muscles in Walking , 1965 .

[29]  A Simkin,et al.  The mechanical testing of bone in bending. , 1973, Journal of biomechanics.

[30]  M. Freeman,et al.  The determination of a creep modulus for articular cartilage from indentation tests of the human femoral head. , 1971, Journal of biomechanics.

[31]  W. P. Blount Don't throw away the cane. , 1956, The Journal of bone and joint surgery. American volume.

[32]  T M Srinivasan,et al.  Human Gait Analysis: Determination of instantaneous joint reactive forces, muscle forces and the stress distribution in bone Segments Part l , 1975, Biomedizinische Technik. Biomedical engineering.

[33]  R. D. Wood,et al.  Stress analysis of human femur with implanted Charnley prosthesis. , 1977, Journal of biomechanics.

[34]  J. Nowinski,et al.  The flexure and torsion of bones viewed as anisotropic poroelastic bodies , 1972 .

[35]  E. Rybicki,et al.  On the mathematical analysis of stress in the human femur. , 1972, Journal of biomechanics.

[36]  W. Bonfield,et al.  Fracture toughness of compact bone. , 1976, Journal of biomechanics.

[37]  T B Belytschko,et al.  A stress analysis of the femoral stem in total hip prostheses. , 1976, The Journal of bone and joint surgery. American volume.

[38]  Evans Fg Bibliography on the physical properties of the skeletal system. , 1967 .

[39]  D M Robertson,et al.  Fracture toughness, critical crack length and plastic zone size in bone. , 1978, Journal of biomechanics.

[40]  J. P. Paul,et al.  31 – BIO-ENGINEERING STUDIES OF THE FORCES TRANSMITTED BY JOINTS: (II) Engineering Analysis , 1965 .

[41]  John C. Koch,et al.  The laws of bone architecture , 1917 .

[42]  J. P. Paul Forces at the human hip joint , 1967 .

[43]  D T Davy,et al.  An optimization approach to tendon force analysis. , 1974, Journal of biomechanics.

[44]  H. Elftman THE FUNCTION OF MUSCLES IN LOCOMOTION , 1939 .

[45]  K Rim,et al.  Stresses in the human knee joint. , 1976, Journal of biomechanics.

[46]  William Bonfield,et al.  Deformation and Fracture of Bone , 1966 .

[47]  P Ducheyne,et al.  The mechanical behaviour of intracondylar cancellous bone of the femur at different loading rates. , 1977, Journal of biomechanics.

[48]  M. S. King,et al.  Determination of Elastic Constants for Human Femurs , 1979 .

[49]  Nils Rydell,et al.  FORCES IN THE HIP-JOINT , 1965 .

[50]  H. R. Lissner,et al.  “Stresscoat” deformation studies of the femur under static vertical loading , 1948, The Anatomical record.

[51]  A. Burstein,et al.  The elastic and ultimate properties of compact bone tissue. , 1975, Journal of biomechanics.

[52]  H. R. Lissner,et al.  Mechanism of Head Injury as Studied by the Cathode Ray Oscilloscope Preliminary Report , 1944 .

[53]  P. Ducheyne,et al.  Factors in the mechanical failure of the femoral component in total hip prosthesis. Report of six fatigue fractures of the femoral stem and results of experimental loading tests. , 1974, Acta orthopaedica Scandinavica.

[54]  H. Milch,et al.  PHOTO-ELASTIC STUDIES OF BONE FORMS , 1940 .

[55]  D D Moyle,et al.  Work to fracture of canine femoral bone. , 1978, Journal of biomechanics.

[56]  V. T. Inman Functional aspects of the abductor muscles of the hip. , 1947, The Journal of bone and joint surgery. American volume.

[57]  U Helfenstein,et al.  Elastic properties of cortical bone in female human femurs. , 1976, Journal of biomechanics.

[58]  R. D. Wood,et al.  Three dimensional stress analysis of the human femur. , 1977, Computers in biology and medicine.

[59]  D N Ghista,et al.  Human Gait Analysis: Determination of instantaneous joint reactive forces, muscle forces and the stress distribution in bone segments Part II - Analyse des menschlichen Gangs: Bestimmung der momentanen Gelenkkräfte, der Muskelkräfte und der Spannungsverteilung in Knochensegmenten Teil II , 1975, Biomedizinische Technik. Biomedical engineering.

[60]  R. Martin,et al.  Age and sex-related changes in the structure and strength of the human femoral shaft. , 1977, Journal of biomechanics.

[61]  Haboush Ej Photoelastic stress and strain analysis in cervical fractures of the femur. , 1952 .

[62]  W. Brekelmans,et al.  A new method to analyse the mechanical behaviour of skeletal parts. , 1972, Acta orthopaedica Scandinavica.

[63]  P S Walker,et al.  Variations in strength and structure of cancellous bone at the knee. , 1974, Journal of biomechanics.

[64]  F. G. Evans,et al.  The mechanical properties of bone. , 1969, Artificial limbs.

[65]  A Seireg,et al.  A mathematical model for evaluation of forces in lower extremeties of the musculo-skeletal system. , 1973, Journal of biomechanics.

[66]  Subrata Saha,et al.  Instrumented tensile-impact tests of bone , 1974 .

[67]  R M Rose,et al.  Elastic and viscoelastic properties of trabecular bone: dependence on structure. , 1973, Journal of biomechanics.

[68]  J. G. Andrews,et al.  A biomechanical investigation of the human hip. , 1978, Journal of biomechanics.