Our Ecological Footprint: Reducing Human Impact on the Earth

Review: Our Ecological Footprint: reducing human impact on the Earth. By Mathis Wackernagel and William Rees Reviewed by Gene Bazan Center for Sustainability, Pennsylvania State University Wackernagel, Mathis and William Rees. Our Ecological Footprint: reducing human impact on the Earth. Philadelphia, PA: New Society Publishers, 1996. 160 pp. US $14.94 paper ISBN: 0-86571-312-X. Partially recycled, acid-free paper using soy-based ink. If the earth's inhabitants were to live at the standard of the U.S., we would require three planet Earths to support us. Many of us have heard or read something like this before. Our Ecological Footprint provides a graphically compelling and quantitatively rigorous way for us to engage in the worldwide sustainability debate: Ecological Footprint analysis. Through this analysis we can determine the consequences of our behavior, and proposed solutions, at any level: individual, household, community, nation, or world. Ecological Footprint analysis measures the aggregate land area required for a given population to exist in a sustainable manner. Wackernagel and Rees note that at 11 acres per person, the U.S. has the highest per capita footprint and suggest that this number should be closer to 6 acres per person. Further, the U.S. faces an 80% ecological deficit, which means we are borrowing from our grandchildren's legacy, and expropriating land from elsewhere in the world. By contrast, each European requires around 5 acres; however, Europeans face higher ecological deficits because they have smaller land areas. Unlike other approaches, which focus on the depletion of non-renewables such as fossil fuel and minerals, Ecological Footprint analysis asserts that the road to sustainability must be paved with sustainable practices. Thus, our use of fossil fuel must have as a compensatory sink the acres of woodlot required to sequester the carbon from our combustion of fossil fuel (in our cars, home heating, etc.) or, alternatively, the acres of fields required to grow biofuel. For example, in comparing our daily commute by car, bus or bicycle, and considering all land requirements (e.g., manufacturing land to produce