Computational Proofs in Dynamics

[1]  P. Pilarczyk,et al.  Global dynamics in a stage-structured discrete-time population model with harvesting. , 2012, Journal of theoretical biology.

[2]  R. Canosa,et al.  The parameterization method for invariant manifolds I: manifolds associated to non-resonant subspaces , 2002 .

[3]  Konstantin Mischaikow,et al.  Rigorous Computations of Homoclinic Tangencies , 2006, SIAM J. Appl. Dyn. Syst..

[4]  Hans Koch,et al.  Integration of Dissipative Partial Differential Equations: A Case Study , 2010, SIAM J. Appl. Dyn. Syst..

[5]  James F. Selgrade,et al.  A geometric criterion for hyperbolicity of flows , 1977 .

[6]  Konstantin Mischaikow,et al.  Rigorous Numerics for Global Dynamics: A Study of the Swift-Hohenberg Equation , 2005, SIAM J. Appl. Dyn. Syst..

[7]  C. Conley Isolated Invariant Sets and the Morse Index , 1978 .

[8]  J. Eckmann,et al.  A computer-assisted proof of universality for area-preserving maps , 1984 .

[9]  Wolf-Jürgen Beyn,et al.  The Numerical Computation of Homoclinic Orbits for Maps , 1997 .

[10]  Robert E. Tarjan,et al.  Depth-First Search and Linear Graph Algorithms , 1972, SIAM J. Comput..

[11]  O. Lanford A computer-assisted proof of the Feigenbaum conjectures , 1982 .

[12]  Pierre Collet,et al.  Universal properties of maps on an interval , 1980 .

[13]  J. Lessard Recent advances about the uniqueness of the slowly oscillating periodic solutions of Wright's equation , 2009, 0909.4107.

[14]  Robert W. Easton,et al.  Isolating blocks and symbolic dynamics , 1975 .

[15]  F. Dumortier,et al.  Cocoon bifurcation in three-dimensional reversible vector fields , 2006 .

[16]  Rafael de la Llave,et al.  A parameterization method for the computation of invariant tori andtheir whiskers in quasi-periodic maps: Numerical algorithms , 2006 .

[17]  J. Robbin,et al.  Dynamical systems, shape theory and the Conley index , 1988, Ergodic Theory and Dynamical Systems.

[18]  R. Llave,et al.  KAM theory without action-angle variables , 2005 .

[19]  H. Koçak,et al.  Homoclinic Shadowing , 2005 .

[20]  K. Mischaikow,et al.  Chaos in the Lorenz equations: a computer-assisted proof , 1995, math/9501230.

[21]  Michael Dellnitz,et al.  Chapter 5 - Set Oriented Numerical Methods for Dynamical Systems , 2002 .

[22]  George R. Sell,et al.  Existence of dichotomies and invariant splittings for linear differential systems, II☆ , 1976 .

[23]  Konstantin Mischaikow,et al.  A Database Schema for the Analysis of Global Dynamics of Multiparameter Systems , 2009, SIAM J. Appl. Dyn. Syst..

[24]  S. S. Cairns,et al.  Differential and combinatorial topology : a symposium in honor of Marston Morse , 1965 .

[25]  R. de la Llave,et al.  Accurate strategies for small divisor problems , 1990 .

[26]  Piotr Zgliczynski,et al.  Rigorous Numerics for Dissipative Partial Differential Equations II. Periodic Orbit for the Kuramoto–Sivashinsky PDE—A Computer-Assisted Proof , 2004, Found. Comput. Math..

[27]  Rafael M. Frongillo,et al.  Algorithms for Rigorous Entropy Bounds and Symbolic Dynamics , 2008, SIAM J. Appl. Dyn. Syst..

[28]  Cone Conditions and Covering Relations for Topologically Normally Hyperbolic Invariant Manifolds , 2011, 1103.1959.

[29]  Hüseyin Koçak,et al.  Transversal connecting orbits from shadowing , 2007, Numerische Mathematik.

[30]  Konstantin Mischaikow,et al.  Rigorous Numerics for Symmetric Connecting Orbits: Even Homoclinics of the Gray-Scott Equation , 2011, SIAM J. Math. Anal..

[31]  Konstantin Mischaikow,et al.  A Rigorous Numerical Method for the Global Analysis of Infinite-Dimensional Discrete Dynamical Systems , 2004, SIAM J. Appl. Dyn. Syst..

[32]  W. Tucker,et al.  A Note on the Convergence of Parametrised Non-Resonant Invariant Manifolds , 2008, 0811.4500.

[33]  Jean-Philippe Lessard,et al.  Rigorous computation of smooth branches of equilibria for the three dimensional Cahn–Hilliard equation , 2011, Numerische Mathematik.

[34]  Thomas Wanner,et al.  Structure of the Attractor of the Cahn-hilliard equation on a Square , 2007, Int. J. Bifurc. Chaos.

[35]  The stable manifold theorem via an isolating block , 1973 .

[36]  W. Kyner Invariant Manifolds , 1961 .

[37]  Siegfried M. Rump,et al.  Verification methods: rigorous results using floating-point arithmetic , 2010, Acta Numerica.

[38]  Pathology in dynamical systems II: Applications , 1976 .

[39]  Konstantin Mischaikow,et al.  An Algorithmic Approach to Chain Recurrence , 2005, Found. Comput. Math..

[40]  A. Neumaier,et al.  Rigorous chaos verification in discrete dynamical systems , 1993 .

[41]  Siegfried M. Rump,et al.  INTLAB - INTerval LABoratory , 1998, SCAN.

[42]  M. Feigenbaum Quantitative universality for a class of nonlinear transformations , 1978 .

[43]  Daniel Wilczak,et al.  Heteroclinic Connections Between Periodic Orbits in Planar Restricted Circular Three Body Problem. Part II , 2004 .

[44]  Jean-Philippe Lessard,et al.  Chaotic Braided Solutions via Rigorous Numerics: Chaos in the Swift-Hohenberg Equation , 2008, SIAM J. Appl. Dyn. Syst..

[45]  James A. Yorke,et al.  Rigorous verification of trajectories for the computer simulation of dynamical systems , 1991 .

[46]  H. Kokubu,et al.  Rigorous verification of cocoon bifurcations in the Michelson system , 2007 .

[47]  Gianni Arioli,et al.  Computer-Assisted Methods for the Study of Stationary Solutions in Dissipative Systems, Applied to the Kuramoto–Sivashinski Equation , 2010 .

[48]  Wolf-Jürgen Beyn,et al.  The Numerical Computation of Connecting Orbits in Dynamical Systems , 1990 .

[49]  C. Fefferman,et al.  Relativistic Stability of Matter - I , 1986 .

[50]  Clark Robinson,et al.  Bifurcation to infinitely many sinks , 1983 .

[51]  Daniel Stoffer,et al.  Rigorous verification of chaotic behaviour of maps using validated shadowing , 1999 .

[52]  Michael Plum,et al.  Computer-assisted proofs for semilinear elliptic boundary value problems , 2009 .

[53]  Konstantin Mischaikow,et al.  Validated Continuation for Equilibria of PDEs , 2007, SIAM J. Numer. Anal..

[54]  Kenneth J. Palmer,et al.  Chaos in the Duffing Equation , 1993 .

[55]  Marian Gidea,et al.  Covering relations for multidimensional dynamical systems , 2004 .

[56]  Zin Arai,et al.  On Hyperbolic Plateaus of the Hénon Map , 2007, Exp. Math..

[57]  Konstantin Mischaikow,et al.  Graph Approach to the Computation of the Homology of Continuous Maps , 2005, Found. Comput. Math..

[58]  Warwick Tucker,et al.  Foundations of Computational Mathematics a Rigorous Ode Solver and Smale's 14th Problem , 2022 .

[59]  M. Gameiro,et al.  Topological Horseshoes of Traveling Waves for a Fast–Slow Predator–Prey System , 2007 .

[60]  R. Canosa,et al.  The parameterization method for invariant manifolds III: overview and applications , 2003 .

[61]  Konstantin Mischaikow,et al.  Global smooth solution curves using rigorous branch following , 2010, Math. Comput..

[62]  D. Wilczak,et al.  Heteroclinic Connections Between Periodic Orbits in Planar Restricted Circular Three-Body Problem – A Computer Assisted Proof , 2002, math/0201278.

[63]  Martin Berz,et al.  On the Estimation of Topological Entropy on Surfaces , 2008 .

[64]  中尾 充宏 Numerical Verification Methods for Solutions of Ordinary and Partial Differential Equations (数学解析の理論的展開の計算機上での遂行可能性) , 2000 .

[65]  J. Eckmann,et al.  Iterated maps on the interval as dynamical systems , 1980 .

[66]  S. Pilyugin Shadowing in dynamical systems , 1999 .

[67]  Oscar E. Lanford,et al.  Computer-assisted proofs in analysis , 1984 .

[68]  S. Smale Diffeomorphisms with Many Periodic Points , 1965 .

[69]  Daniel Wilczak,et al.  Uniformly Hyperbolic Attractor of the Smale-Williams Type for a Poincaré Map in the Kuznetsov System , 2010, SIAM J. Appl. Dyn. Syst..