Forest biomass estimation using synthetic aperture radar polarimetric features

Abstract. Polarimetric synthetic aperture radar (POLSAR) images have many applications in forest studies, especially for biomass estimation. An algorithm was proposed to extract optimized features from POLSAR images that are required for estimation. The algorithm included three main steps: feature extraction including radar backscatters and Pope’s, Cloude–Pottier’s, Freeman–Durden’s, and Touzi’s parameters; feature selection using a particle swarm optimization (PSO); and forest biomass estimation using multivariate relevance vector regression (MVRVR) and support vector regression. Based on the PSO, a combination of features was selected. The estimation based on the PSO selection was the most accurate, with the MVRVR model showing the highest coefficient of determination (R2, 0.86) and the lowest errors, with a root-mean square error of 39.17, a mean absolute error of 36.50, and a mean error of 11.59.

[1]  Lars M. H. Ulander,et al.  L- and P-band backscatter intensity for biomass retrieval in hemiboreal forest , 2011 .

[2]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[3]  Hiroyoshi Yamada,et al.  Four-Component Scattering Power Decomposition With Rotation of Coherency Matrix , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[4]  Sassan Saatchi,et al.  Estimation of Forest Fuel Load From Radar Remote Sensing , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[5]  João Roberto dos Santos,et al.  Savanna and tropical rainforest biomass estimation and spatialization using JERS-1 data , 2002 .

[6]  Guoqing Sun,et al.  The ecosystems SAR (EcoSAR) an airborne P-band polarimetric InSAR for the measurement of vegetation structure, biomass and permafrost , 2014, 2014 IEEE Radar Conference.

[7]  R. N. Treuhaft,et al.  Stem volume of tropical forests from polarimetric radar , 2011 .

[8]  Stephen L. Durden,et al.  A three-component scattering model for polarimetric SAR data , 1998, IEEE Trans. Geosci. Remote. Sens..

[9]  A. Mansourian,et al.  Polarimetric SAR feature selection using a genetic algorithm , 2011 .

[10]  J. Fransson Estimation of stem volume in boreal forests using ERS-1 C- and JERS-1 L-band SAR data , 1999 .

[11]  Hong Sun,et al.  Polarimetric SAR Image Classification Using Multifeatures Combination and Extremely Randomized Clustering Forests , 2010, EURASIP J. Adv. Signal Process..

[12]  Jack F. Paris,et al.  Radar remote sensing of forest and wetland ecosystems in the Central American tropics , 1994 .

[13]  I. Woodhouse Introduction to Microwave Remote Sensing , 2005 .

[14]  J. Carreiras,et al.  Understanding the relationship between aboveground biomass and ALOS PALSAR data in the forests of Guinea-Bissau (West Africa) , 2012 .

[15]  Maurizio Santoro,et al.  Signatures of ALOS PALSAR L-Band Backscatter in Swedish Forest , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[16]  M. Kiaei,et al.  Fiber Dimensions, Physical and Mechanical Properties of Five Important Hardwood Plants , 2011 .

[17]  Thuy Le Toan,et al.  Forest Biophysical Parameter Estimation Using L- and P-Band Polarimetric SAR Data , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[18]  Jon Atli Benediktsson,et al.  Feature Selection Based on Hybridization of Genetic Algorithm and Particle Swarm Optimization , 2015, IEEE Geoscience and Remote Sensing Letters.

[19]  Thuy Le Toan,et al.  Dependence of radar backscatter on coniferous forest biomass , 1992, IEEE Trans. Geosci. Remote. Sens..

[20]  Masanobu Shimada,et al.  An Evaluation of the ALOS PALSAR L-Band Backscatter—Above Ground Biomass Relationship Queensland, Australia: Impacts of Surface Moisture Condition and Vegetation Structure , 2010, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[21]  Marc L. Imhoff,et al.  Radar backscatter and biomass saturation: ramifications for global biomass inventory , 1995, IEEE Transactions on Geoscience and Remote Sensing.

[22]  José Claudio Mura,et al.  Mapping Macrophyte Species in the Amazon Floodplain Wetlands Using Fully Polarimetric ALOS/PALSAR Data , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[23]  I. Woodhouse,et al.  Using satellite radar backscatter to predict above‐ground woody biomass: A consistent relationship across four different African landscapes , 2009 .

[24]  Lei Shi,et al.  Supervised Graph Embedding for Polarimetric SAR Image Classification , 2013, IEEE Geoscience and Remote Sensing Letters.

[25]  D. Lu The potential and challenge of remote sensing‐based biomass estimation , 2006 .

[26]  J. Amini,et al.  Development of an allometric model to estimate above-ground biomass of forests using MLPNN algorithm, case study: Hyrcanian forests of Iran , 2016 .

[27]  Sylvain G. Leblanc,et al.  Biomass measurements and relationships with Landsat‐7/ETM+ and JERS‐1/SAR data over Canada's western sub‐arctic and low arctic , 2009 .

[28]  Ridha Touzi,et al.  Target Scattering Decomposition in Terms of Roll-Invariant Target Parameters , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[29]  Avik Bhattacharya,et al.  A Generic Land-Cover Classification Framework for Polarimetric SAR Images Using the Optimum Touzi Decomposition Parameter Subset—An Insight on Mutual Information-Based Feature Selection Techniques , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[30]  Marc L. Imhoff,et al.  Radar backscatter and biomass saturation: ramifications for global biomass inventory , 1995 .

[31]  Bernard De Baets,et al.  Impact of Reducing Polarimetric SAR Input on the Uncertainty of Crop Classifications Based on the Random Forests Algorithm , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[32]  Ridha Touzi,et al.  Phase of Target Scattering for Wetland Characterization Using Polarimetric C-Band SAR , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[33]  Masanobu Shimada,et al.  PALSAR Radiometric and Geometric Calibration , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[34]  George Eastman House,et al.  Sparse Bayesian Learning and the Relevance Vector Machine , 2001 .

[35]  Richard Gloaguen,et al.  Improving the Estimation of Above Ground Biomass Using Dual Polarimetric PALSAR and ETM+ Data in the Hyrcanian Mountain Forest (Iran) , 2014, Remote. Sens..

[36]  José Luis Rojo-Álvarez,et al.  Robust support vector regression for biophysical variable estimation from remotely sensed images , 2006, IEEE Geoscience and Remote Sensing Letters.

[37]  Eric Pottier,et al.  An entropy based classification scheme for land applications of polarimetric SAR , 1997, IEEE Trans. Geosci. Remote. Sens..

[38]  Luis Gómez-Chova,et al.  Biophysical Parameter Estimation With a Semisupervised Support Vector Machine , 2009, IEEE Geoscience and Remote Sensing Letters.

[39]  Sandra Englhart,et al.  Modeling Aboveground Biomass in Tropical Forests Using Multi-Frequency SAR Data—A Comparison of Methods , 2012, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[40]  Ryutaro Tateishi,et al.  Speckle Reduction of PolSAR Images in Forest Regions Using Fast ICA Algorithm , 2015, Journal of the Indian Society of Remote Sensing.

[41]  P. West Tree and Forest Measurement , 2003, Springer International Publishing.