Copula model evaluation based on parametric bootstrap

Copulas are used to model multivariate data as they account for the dependence structure and provide a flexible representation of the multivariate distribution. A great number of copulas has been proposed with various dependence aspects. One important issue is the choice of an appropriate copula from a large set of candidate families to model the data at hand. A large number of copulas are compared via likelihood principle, showing that it is hard to recognize the true underlying copula from real data since copulas with similar dependence properties are very close together. A goodness of fit test based on Mahalanobis squared distance between original and simulated log-likelihoods through parametric bootstrap techniques is also proposed. The advantage of this approach is that it is applicable to all families of copulas.

[1]  Anthony C. Atkinson,et al.  A test for discriminating between models , 1969 .

[2]  Friedrich Schmid,et al.  A goodness of fit test for copulas based on Rosenblatt's transformation , 2007, Comput. Stat. Data Anal..

[3]  Martin T. Wells,et al.  Model Selection and Semiparametric Inference for Bivariate Failure-Time Data , 2000 .

[4]  L. M. M.-T. Theory of Probability , 1929, Nature.

[5]  R. Nelsen An Introduction to Copulas , 1998 .

[6]  Satishs Iyengar,et al.  Multivariate Models and Dependence Concepts , 1998 .

[7]  C. Genest,et al.  Bivariate Distributions with Given Extreme Value Attractor , 2000 .

[8]  C. Genest,et al.  Statistical Inference Procedures for Bivariate Archimedean Copulas , 1993 .

[9]  Jean-David Fermanian,et al.  Goodness-of-fit tests for copulas , 2005 .

[10]  N. L. Johnson,et al.  Multivariate Analysis , 1958, Nature.

[11]  Bruno Rémillard,et al.  Goodness‐of‐fit Procedures for Copula Models Based on the Probability Integral Transformation , 2006 .

[12]  Anthony C. Atkinson,et al.  A Method for Discriminating between Models , 1970 .

[13]  I. Olkin,et al.  Can data recognize its parent distribution , 1999 .

[14]  Anne-Catherine Favre,et al.  Bayesian copula selection , 2006, Comput. Stat. Data Anal..

[15]  Thierry Roncalli,et al.  Which Copula is the Right One? , 2000 .

[16]  Wolfgang Breymann,et al.  Dependence structures for multivariate high-frequency data in finance , 2003 .

[17]  Pierre Duchesne,et al.  Statistical Modeling and Analysis for Complex Data Problems , 2010 .

[18]  Bruno Rémillard,et al.  Dependence Properties of Meta-Elliptical Distributions , 2005 .

[19]  Gunky Kim,et al.  Comparison of semiparametric and parametric methods for estimating copulas , 2007, Comput. Stat. Data Anal..

[20]  Christian Genest,et al.  Copules archimédiennes et families de lois bidimensionnelles dont les marges sont données , 1986 .

[21]  Rafael Schmidt,et al.  Non‐parametric Estimation of Tail Dependence , 2006 .

[22]  Friedrich Schmid,et al.  Nonparametric estimation of the lower tail dependence λ L in bivariate copulas , 2005 .

[23]  Chris A. Glasbey,et al.  A simulation-based method for model evaluation , 2003 .

[24]  Ling Hu Dependence patterns across financial markets: a mixed copula approach , 2006 .

[25]  Anne-Laure Fougères,et al.  Estimation of a Bivariate Extreme Value Distribution , 2000 .

[26]  C. Genest Frank's family of bivariate distributions , 1987 .

[27]  Yanqin Fan,et al.  Pseudo‐likelihood ratio tests for semiparametric multivariate copula model selection , 2005 .