On Solutions of Mean Field Games with Ergodic Cost

A general class of mean field games are considered where the governing dynamics are controlled diffusions in $\mathbb{R}^d$. The optimization criterion is the long time average of a running cost function. Under various sets of hypotheses, we establish the existence of mean field game solutions. We also study the long time behavior of mean field game solutions associated with the finite horizon problem, and under the assumption of geometric ergodicity for the dynamics, we show that these converge to the ergodic mean field game solution as the horizon tends to infinity. Lastly, we study the associated $N$-player games, show existence of Nash equilibria, and establish the convergence of the solutions associated to Nash equilibria of the game to a mean field game solution as $N\to\infty$.

[1]  I. Gyöngy,et al.  Existence of strong solutions for Itô's stochastic equations via approximations , 1996 .

[2]  P. Kloeden,et al.  Exponentially Stable Stationary Solutions for Stochastic Evolution Equations and Their Perturbation , 2004 .

[3]  Vivek S. Borkar,et al.  Convergence of the Relative Value Iteration for the Ergodic Control Problem of Nondegenerate Diffusions under Near-Monotone Costs , 2013, SIAM J. Control. Optim..

[4]  Olivier Guéant Existence and Uniqueness Result for Mean Field Games with Congestion Effect on Graphs , 2011, 1110.3442.

[5]  Vivek S. Borkar,et al.  A Relative Value Iteration Algorithm for Nondegenerate Controlled Diffusions , 2012, SIAM J. Control. Optim..

[6]  R. Carmona,et al.  A probabilistic weak formulation of mean field games and applications , 2013, 1307.1152.

[7]  G. Roberts,et al.  SUBGEOMETRIC ERGODICITY OF STRONG MARKOV PROCESSES , 2005, math/0505260.

[8]  Alain Bensoussan,et al.  Linear–Quadratic Time-Inconsistent Mean Field Games , 2013, Dyn. Games Appl..

[9]  École d'été de probabilités de Saint-Flour,et al.  Ecole d'été de probabilités de Saint-Flour XIX, 1989 , 1991 .

[10]  René Carmona,et al.  Probabilistic Analysis of Mean-field Games , 2013 .

[11]  Diogo A. Gomes,et al.  Mean Field Games Models—A Brief Survey , 2013, Dynamic Games and Applications.

[12]  P. Cardaliaguet,et al.  Mean Field Games , 2020, Lecture Notes in Mathematics.

[13]  V. Bogachev,et al.  ON REGULARITY OF TRANSITION PROBABILITIES AND INVARIANT MEASURES OF SINGULAR DIFFUSIONS UNDER MINIMAL CONDITIONS , 2001 .

[14]  E. Renshaw,et al.  STOCHASTIC DIFFERENTIAL EQUATIONS , 1974 .

[15]  A. Sznitman Topics in propagation of chaos , 1991 .

[16]  Y. Kamarianakis Ergodic control of diffusion processes , 2013 .

[17]  P. Lions,et al.  Jeux à champ moyen. II – Horizon fini et contrôle optimal , 2006 .

[18]  Markus Fischer On the connection between symmetric $N$-player games and mean field games , 2014, 1405.1345.

[19]  Edgard A. Pimentel,et al.  Regularity for second order stationary mean-field games , 2015, 1503.06445.

[20]  V. Kolokoltsov Nonlinear Markov Processes and Kinetic Equations , 2010 .

[21]  Diogo A. Gomes,et al.  On the existence of classical solutions for stationary extended mean field games , 2013, 1305.2696.

[22]  P. Malliavin Infinite dimensional analysis , 1993 .

[23]  W. Stannat (Nonsymmetric) Dirichlet operators on $L^1$ : existence, uniqueness and associated Markov processes , 1999 .

[24]  P. Lions,et al.  Mean field games , 2007 .

[25]  Ermal Feleqi The Derivation of Ergodic Mean Field Game Equations for Several Populations of Players , 2013, Dyn. Games Appl..

[26]  Peter E. Caines,et al.  Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle , 2006, Commun. Inf. Syst..

[27]  P. Lions,et al.  Jeux à champ moyen. I – Le cas stationnaire , 2006 .

[28]  O. Ladyženskaja Linear and Quasilinear Equations of Parabolic Type , 1968 .

[29]  A. Bensoussan,et al.  Mean Field Games and Mean Field Type Control Theory , 2013 .

[30]  L. J. Savage,et al.  Symmetric measures on Cartesian products , 1955 .

[31]  Nicolas Tabareau,et al.  A Contraction Theory Approach to Stochastic Incremental Stability , 2007, IEEE Transactions on Automatic Control.

[32]  V. Borkar Ergodic Control of Diffusion Processes , 2012 .

[33]  Olivier Guéant,et al.  Mean Field Games and Applications , 2011 .

[34]  S. Meyn,et al.  Exponential and Uniform Ergodicity of Markov Processes , 1995 .

[35]  Daniel Lacker,et al.  Mean field games via controlled martingale problems: Existence of Markovian equilibria , 2014, 1404.2642.

[36]  Pierre-Louis Lions,et al.  Long Time Average of Mean Field Games with a Nonlocal Coupling , 2013, SIAM J. Control. Optim..

[37]  D. Gomes,et al.  Continuous Time Finite State Mean Field Games , 2012, 1203.3173.

[38]  W. Zhang In discrete Time , 2017 .

[39]  Diogo A. Gomes,et al.  On the convergence of finite state mean-field games through Γ-convergence , 2014 .

[40]  Naoyuki Ichihara,et al.  Large Time Behavior of Solutions of Hamilton-Jacobi-Bellman Equations with Quadratic Nonlinearity in Gradients , 2013, SIAM J. Math. Anal..

[41]  C. Villani Topics in Optimal Transportation , 2003 .

[42]  D. Lacker A general characterization of the mean field limit for stochastic differential games , 2014, 1408.2708.

[43]  Fabio S. Priuli,et al.  Linear-Quadratic N-person and Mean-Field Games with Ergodic Cost , 2014, SIAM J. Control. Optim..

[44]  Pierre-Louis Lions,et al.  Long time average of mean field games , 2012, Networks Heterog. Media.

[45]  S. Shreve,et al.  Stochastic differential equations , 1955, Mathematical Proceedings of the Cambridge Philosophical Society.

[46]  D. Gomes,et al.  Discrete Time, Finite State Space Mean Field Games , 2010 .