Continuous Gaussian Multifractional Processes with Random Pointwise Hölder Regularity

Let {X(t)}t∈ℝ be an arbitrary centered Gaussian process whose trajectories are, with probability 1, continuous nowhere differentiable functions. It follows from a classical result, derived from zero-one law, that, with probability 1, the trajectories of X have the same global Hölder regularity over any compact interval, i.e. the uniform Hölder exponent does not depend on the choice of a trajectory. A similar phenomenon occurs with their local Hölder regularity measured through the local Hölder exponent. Therefore, it seems natural to ask the following question: Does such a phenomenon also occur with their pointwise Hölder regularity measured through the pointwise Hölder exponent?In this article, using the framework of multifractional processes, we construct a family of counterexamples showing that the answer to this question is not always positive.

[1]  Functions with Prescribed Hölder Exponent , 1995 .

[2]  J. Kahane Some Random Series of Functions , 1985 .

[3]  E. Herbin,et al.  Stochastic 2-microlocal analysis , 2005, math/0504551.

[4]  Murad S. Taqqu,et al.  MULTIFRACTIONAL PROCESSES WITH RANDOM EXPONENT , 2005 .

[5]  M. Meerschaert,et al.  Local times of multifractional Brownian sheets , 2008, 0810.4438.

[6]  S. Jaffard,et al.  Wavelet construction of Generalized Multifractional processes. , 2007 .

[7]  O. Barriere Synthèse et estimation de mouvements browniens multifractionnaires et autres processus à régularité prescrite : définition du processus auto-régulé multifractionnaire et applications , 2007 .

[8]  Jacques Lévy Véhel,et al.  The local Hölder function of a continuous function , 2002 .

[9]  Y. Meyer,et al.  Ondelettes et bases hilbertiennes. , 1986 .

[10]  Antoine Ayache,et al.  The Generalized Multifractional Field: A Nice Tool for the Study of the Generalized Multifractional Brownian Motion , 2002 .

[11]  J. L. Véhel,et al.  Multifractional, Multistable, and Other Processes with Prescribed Local Form , 2008, 0802.0645.

[12]  S. Jaffard Wavelet Techniques in Multifractal Analysis , 2004 .

[13]  H. Kober ON FRACTIONAL INTEGRALS AND DERIVATIVES , 1940 .

[14]  K. Falconer The Local Structure of Random Processes , 2003 .

[15]  Yimin Xiao Hölder conditions for the local times and the Hausdorff measure of the level sets of Gaussian random fields , 1997 .

[16]  S. Jaffard,et al.  Elliptic gaussian random processes , 1997 .

[17]  Y. Meyer Wavelets and Operators , 1993 .

[18]  J. Kuelbs Probability on Banach spaces , 1978 .

[19]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[20]  S. Jaffard The multifractal nature of Lévy processes , 1999 .

[21]  A. Ayache,et al.  Multiparameter multifractional Brownian motion: Local nondeterminism and joint continuity of the local times , 2011 .

[22]  S. Jaffard,et al.  A pure jump Markov process with a random singularity spectrum , 2009, 0907.0104.

[23]  R. Peltier,et al.  Multifractional Brownian Motion : Definition and Preliminary Results , 1995 .

[24]  Y. Meyer,et al.  Construction of Continuous Functions with Prescribed Local Regularity , 1998 .

[25]  K. Falconer Tangent Fields and the Local Structure of Random Fields , 2002 .

[26]  Yves Meyer,et al.  Wavelets - tools for science and technology , 1987 .

[27]  M. Taqqu,et al.  Stable Non-Gaussian Random Processes : Stochastic Models with Infinite Variance , 1995 .

[28]  Patrik Andersson Characterization of Pointwise Hölder Regularity , 1997 .

[29]  Kenneth Falconer,et al.  Fractal Geometry: Mathematical Foundations and Applications , 1990 .

[30]  Murad S. Taqqu,et al.  How rich is the class of multifractional Brownian motions , 2006 .

[31]  R. Adler,et al.  The Geometry of Random Fields , 1982 .

[32]  Yimin Xiao Properties of Local Nondeterminism of Gaussian and Stable Random Fields and Their Applications , 2006 .

[33]  D. Surgailis Nonhomogeneous fractional integration and multifractional processes , 2008 .

[34]  N. S. Landkof Foundations of Modern Potential Theory , 1972 .

[35]  S. Berman Local nondeterminism and local times of Gaussian processes , 1973 .

[36]  M. Lapidus,et al.  Fractal Geometry and Applications: A Jubilee of Benoît Mandelbrot , 2004 .

[37]  M. Lifshits Gaussian Random Functions , 1995 .

[38]  Ronan Le Gu'evel,et al.  Localisable moving average stable and multistable processes , 2008, 0807.0764.

[39]  R. Adler The Geometry of Random Fields , 2009 .

[40]  From N parameter fractional Brownian motions to N parameter multifractional Brownian motions , 2005, math/0503182.