Acoustic inverse scattering via Helmholtz operator factorization and optimization
暂无分享,去创建一个
[1] E. Turkel,et al. Absorbing PML boundary layers for wave-like equations , 1998 .
[2] Changsoo Shin,et al. A comparison between the behavior of objective functions for waveform inversion in the frequency and Laplace domains , 2008 .
[3] JIANLIN XIA,et al. ROBUST STRUCTURED MULTIFRONTAL FACTORIZATION AND PRECONDITIONING FOR DISCRETIZED PDES , 2011 .
[4] Cornelis Vuik,et al. A new iterative solver for the time-harmonic wave equation , 2006 .
[5] Bernard C. Levy,et al. Variable Background Born Inversion by Wavefield Backpropagation , 1988 .
[6] Joseph W. H. Liu. The role of elimination trees in sparse factorization , 1990 .
[7] Patrick Amestoy,et al. An Unsymmetrized Multifrontal LU Factorization , 2000, SIAM J. Matrix Anal. Appl..
[8] J. Tromp,et al. Finite-Frequency Kernels Based on Adjoint Methods , 2006 .
[9] Stanley C. Eisenstat,et al. A TREE-BASED DATAFLOW MODEL FOR THE UNSYMMETRIC MULTIFRONTAL METHOD , 2005 .
[10] MAARTEN V. DE HOOP,et al. INVERSE SCATTERING OF SEISMIC DATA IN THE REVERSE TIME MIGRATION ( RTM ) APPROACH , 2011 .
[11] Maarten V. de Hoop,et al. Wave-equation reflection tomography: annihilators and sensitivity kernels , 2006 .
[12] Shivkumar Chandrasekaran,et al. A Fast Solver for HSS Representations via Sparse Matrices , 2006, SIAM J. Matrix Anal. Appl..
[13] Shivkumar Chandrasekaran,et al. On the Numerical Rank of the Off-Diagonal Blocks of Schur Complements of Discretized Elliptic PDEs , 2010, SIAM J. Matrix Anal. Appl..
[14] Joseph W. H. Liu,et al. The Multifrontal Method for Sparse Matrix Solution: Theory and Practice , 1992, SIAM Rev..
[15] E. Ng,et al. Predicting structure in nonsymmetric sparse matrix factorizations , 1993 .
[16] M. Sacchi,et al. Least‐squares wave‐equation migration for AVP/AVA inversion , 2003 .
[17] R. Pratt. Seismic waveform inversion in the frequency domain; Part 1, Theory and verification in a physical scale model , 1999 .
[18] William W. Symes,et al. Global solution of a linearized inverse problem for the wave equation , 1997 .
[19] René-Édouard Plessix,et al. A Helmholtz iterative solver for 3D seismic-imaging problems , 2007 .
[20] Jianlin Xia,et al. Fast algorithms for hierarchically semiseparable matrices , 2010, Numer. Linear Algebra Appl..
[21] S. Lele. Compact finite difference schemes with spectral-like resolution , 1992 .
[22] Maarten V. de Hoop,et al. On sensitivity kernels for ‘wave-equation’ transmission tomography , 2005 .
[23] R. Shipp,et al. Seismic waveform inversion in the frequency domain, Part 2: Fault delineation in sediments using crosshole data , 1999 .
[24] Jean Virieux,et al. Multiscale imaging of complex structures from multifold wide-aperture seismic data by frequency-domain full-waveform tomography: application to a thrust belt , 2004 .
[25] R. Plessix,et al. Frequency-domain finite-difference amplitude-preserving migration , 2004 .
[26] Shen Wang,et al. Illumination analysis of wave-equation imaging with curvelets , 2010 .
[27] A. George. Nested Dissection of a Regular Finite Element Mesh , 1973 .
[28] Cornelis Vuik,et al. On a Class of Preconditioners for Solving the Helmholtz Equation , 2003 .
[29] Joseph W. H. Liu,et al. The Theory of Elimination Trees for Sparse Unsymmetric Matrices , 2005, SIAM J. Matrix Anal. Appl..
[30] Patrick Joly,et al. Second-order absorbing boundary conditions for the wave equation: a solution for the corner problem , 1990 .
[31] Robert Schreiber,et al. A New Implementation of Sparse Gaussian Elimination , 1982, TOMS.
[32] P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .
[33] Thomas H. Jordan,et al. Three‐dimensional Fréchet differential kernels for seismicdelay times , 2000 .
[34] S. Operto,et al. 3D finite-difference frequency-domain modeling of visco-acoustic wave propagation using a massively parallel direct solver: A feasibility study , 2007 .
[35] Mario Bebendorf,et al. Mathematik in den Naturwissenschaften Leipzig Existence of H-Matrix Approximants to the Inverse FE-Matrix of Elliptic Operators with L ∞-Coefficients , 2003 .
[36] Maarten V. de Hoop,et al. Sensitivity Analysis of Wave-equation Tomography: A Multi-scale Approach , 2010 .
[37] R. Gerhard Pratt,et al. Efficient waveform inversion and imaging: A strategy for selecting temporal frequencies , 2004 .
[38] I. Singer,et al. High-order finite difference methods for the Helmholtz equation , 1998 .
[39] Elisabeth Larsson,et al. A Domain Decomposition Method for the Helmholtz Equation in a Multilayer Domain , 1999, SIAM J. Sci. Comput..
[40] Maarten V. de Hoop,et al. Microlocal analysis of seismic inverse scattering in anisotropic elastic media , 2002 .
[41] A. Morelli. Inverse Problem Theory , 2010 .
[42] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[43] I. Singer,et al. A perfectly matched layer for the Helmholtz equation in a semi-infinite strip , 2004 .
[44] D. Rose,et al. Complexity Bounds for Regular Finite Difference and Finite Element Grids , 1973 .
[45] Jean Virieux,et al. An overview of full-waveform inversion in exploration geophysics , 2009 .
[46] Jianlin Xia,et al. Superfast Multifrontal Method for Large Structured Linear Systems of Equations , 2009, SIAM J. Matrix Anal. Appl..
[47] Mario Bebendorf,et al. Efficient inversion of the Galerkin matrix of general second-order elliptic operators with nonsmooth coefficients , 2004, Math. Comput..
[48] John K. Reid,et al. The Multifrontal Solution of Indefinite Sparse Symmetric Linear , 1983, TOMS.
[49] Shivkumar Chandrasekaran,et al. A Fast ULV Decomposition Solver for Hierarchically Semiseparable Representations , 2006, SIAM J. Matrix Anal. Appl..
[50] René-Édouard Plessix,et al. How to choose a subset of frequencies in frequency-domain finite-difference migration , 2004 .
[51] Cornelis Vuik,et al. A Novel Multigrid Based Preconditioner For Heterogeneous Helmholtz Problems , 2005, SIAM J. Sci. Comput..
[52] K. Marfurt. Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equations , 1984 .
[53] Jack Dongarra,et al. Templates for the Solution of Algebraic Eigenvalue Problems , 2000, Software, environments, tools.
[54] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[55] Felix J. Herrmann,et al. An Iterative Multilevel Method For Computing Wavefields In Frequency-domain Seismic Inversion , 2008 .
[56] Maarten V. de Hoop,et al. Evolution-equation approach to seismic image, and data, continuation ☆ , 2008 .
[57] Cornelis Vuik,et al. A parallel multigrid-based preconditioner for the 3D heterogeneous high-frequency Helmholtz equation , 2007, J. Comput. Phys..
[58] Dianne P. O'Leary,et al. A Multigrid Method Enhanced by Krylov Subspace Iteration for Discrete Helmholtz Equations , 2001, SIAM J. Sci. Comput..
[59] Christiaan C. Stolk,et al. Kinematics of shot-geophone migration , 2009 .
[60] Hui Yang,et al. The finite-frequency sensitivity kernel for migration residual moveout and its applications in migration velocity analysis , 2008 .