An additive Schwarz preconditioner for the FETI method

Summary. A new additive Schwarz preconditioner for the Finite Element Tearing and Interconnecting (FETI) method is analyzed in this paper. This preconditioner has the unique feature that the coefficient matrix of its ``coarse grid'' problem is mesh independent. For a model second order heterogeneous elliptic boundary value problem in two dimensions, the condition number of the preconditioned system is shown to be bounded by C[1+ln(H/h)]2, where h is the mesh size, H is the typical diameter of the subdomains, and the constant C is independent of h, H, the number of subdomains and the coefficients of the boundary value problem.

[1]  J. Mandel Balancing domain decomposition , 1993 .

[2]  J. Mandel,et al.  Convergence of a substructuring method with Lagrange multipliers , 1994 .

[3]  C. Farhat,et al.  A Scalable Substructuring Method By Lagrange Multipliers For Plate Bending Problems , 1996 .

[4]  C. Farhat,et al.  The two-level FETI method for static and dynamic plate problems Part I: An optimal iterative solver for biharmonic systems , 1998 .

[5]  P. Oswald,et al.  Remarks on the Abstract Theory of Additive and Multiplicative Schwarz Algorithms , 1995 .

[6]  Charbel Farhat,et al.  A Lagrange multiplier based divide and conquer finite element algorithm , 1991 .

[7]  Carlos A. Felippa,et al.  An algebraically partitioned FETI method for parallel structural analysis: algorithm description , 1997 .

[8]  D. Rixen,et al.  FETI‐DP: a dual–primal unified FETI method—part I: A faster alternative to the two‐level FETI method , 2001 .

[9]  Jinchao Xu,et al.  Iterative Methods by Space Decomposition and Subspace Correction , 1992, SIAM Rev..

[10]  C. Farhat,et al.  Optimal convergence properties of the FETI domain decomposition method , 1994 .

[11]  J. Pasciak,et al.  The Construction of Preconditioners for Elliptic Problems by Substructuring. , 2010 .

[12]  D. Rixen,et al.  A simple and efficient extension of a class of substructure based preconditioners to heterogeneous structural mechanics problems , 1999 .

[13]  C. Farhat,et al.  A method of finite element tearing and interconnecting and its parallel solution algorithm , 1991 .

[14]  Petter E. Bjørstad,et al.  On the spectra of sums of orthogonal projections with applications to parallel computing , 1991 .

[15]  O. Widlund,et al.  FETI and Neumann--Neumann Iterative Substructuring Methods: Connections and New Results , 1999 .

[16]  Patrick Le Tallec,et al.  Balancing Domain Decomposition for Plates , 1993 .

[17]  Charbel Farhat,et al.  Implicit parallel processing in structural mechanics , 1994 .

[18]  O. Widlund Some Schwarz Methods for Symmetric and Nonsymmetric Elliptic Problems , 1991 .

[19]  Jan Mandel,et al.  On the convergence of a dual-primal substructuring method , 2000, Numerische Mathematik.

[20]  Charbel Farhat,et al.  An Unconventional Domain Decomposition Method for an Efficient Parallel Solution of Large-Scale Finite Element Systems , 1992, SIAM J. Sci. Comput..

[21]  Olof B. Widlund,et al.  A Domain Decomposition Method with Lagrange Multipliers and Inexact Solvers for Linear Elasticity , 2000, SIAM J. Sci. Comput..

[22]  Carlos A. Felippa,et al.  An algebraically partitioned FETI method for parallel structural analysis: performance evaluation , 1997 .

[23]  Daniel Rixen,et al.  Application of the FETI method to ASCI problems—scalability results on 1000 processors and discussion of highly heterogeneous problems , 2000 .

[24]  T. Chan,et al.  Domain decomposition algorithms , 1994, Acta Numerica.

[25]  Marian Brezina,et al.  Balancing domain decomposition for problems with large jumps in coefficients , 1996, Math. Comput..

[26]  O. Widlund,et al.  Schwarz Methods of Neumann-Neumann Type for Three-Dimensional Elliptic Finite Element Problems , 1993 .

[27]  P. Tallec Domain decomposition methods in computational mechanics , 1994 .

[28]  C. Farhat,et al.  A scalable Lagrange multiplier based domain decomposition method for time‐dependent problems , 1995 .