Clausal Connection-Based Theorem Proving in Intuitionistic First-Order Logic

We present a clausal connection calculus for first-order intuitionistic logic. It extends the classical connection calculus by adding prefixes that encode the characteristics of intuitionistic logic. Our calculus is based on a clausal matrix characterisation for intuitionistic logic, which we prove correct and complete. The calculus was implemented by extending the classical prover leanCoP. We present some details of the implementation, called ileanCoP, and experimental results.

[1]  Melvin Fitting,et al.  First-Order Logic and Automated Theorem Proving , 1990, Graduate Texts in Computer Science.

[2]  Rance Cleaveland,et al.  Implementing mathematics with the Nuprl proof development system , 1986 .

[3]  Wolfgang Bibel Matings in matrices , 1983, CACM.

[4]  William McCune,et al.  Automated Deduction—CADE-14 , 1997, Lecture Notes in Computer Science.

[5]  Donald W. Loveland,et al.  Mechanical Theorem-Proving by Model Elimination , 1968, JACM.

[6]  Wolfgang Bibel,et al.  leanCoP: lean connection-based theorem proving , 2003, J. Symb. Comput..

[7]  Geoff Sutcliffe,et al.  The TPTP Problem Library , 1994, Journal of Automated Reasoning.

[8]  Reinhold Letz,et al.  Model Elimination and Connection Tableau Procedures , 2001, Handbook of Automated Reasoning.

[9]  Tanel Tammet,et al.  A Resolution Theorem Prover for Intuitonistic Logic , 1996, CADE.

[10]  Bernhard Beckert,et al.  leanTAP: Lean Tableau-Based Theorem Proving (Extended Abstract) , 1994, CADE.

[11]  Lawrence J. Henschen,et al.  What Is Automated Theorem Proving? , 1985, J. Autom. Reason..

[12]  Roy Dyckhoff,et al.  Contraction-free sequent calculi for intuitionistic logic , 1992, Journal of Symbolic Logic.

[13]  Christoph Kreitz,et al.  A Uniform Proof Procedure for Classical and Non-Classical Logics , 1996, KI.

[14]  Alan Bundy,et al.  Automated Deduction — CADE-12 , 1994, Lecture Notes in Computer Science.

[15]  Arild Waaler,et al.  Connections in Nonclassical Logics , 2001, Handbook of Automated Reasoning.

[16]  William McCune,et al.  OTTER 3.0 Reference Manual and Guide , 1994 .

[17]  Christoph Kreitz,et al.  Connection-based Theorem Proving in Classical and Non-classical Logics , 1999, J. Univers. Comput. Sci..

[18]  Alberto Martelli,et al.  An Efficient Unification Algorithm , 1982, TOPL.

[19]  Christoph Kreitz,et al.  Connection-Based Proof Construction in Linear Logic , 1997, CADE.

[20]  Christoph Kreitz,et al.  The ILTP Library: Benchmarking Automated Theorem Provers for Intuitionistic Logic , 2005, TABLEAUX.

[21]  Christoph Kreitz,et al.  Converting Non-Classical Matrix Proofs into Sequent-Style Systems , 1996, CADE.

[22]  Alan Robinson,et al.  Handbook of automated reasoning , 2001 .

[23]  Lincoln A. Wallen,et al.  Automated deduction in nonclassical logics , 1990 .

[24]  Roy Dyckhoff Automated Reasoning with Analytic Tableaux and Related Methods , 2000, Lecture Notes in Computer Science.

[25]  Günther Görz,et al.  KI-96: Advances in Artificial Intelligence , 1996, Lecture Notes in Computer Science.

[26]  M. de Rijke,et al.  Encoding Two-Valued Nonclassical Logics in Classical Logic , 2001, Handbook of Automated Reasoning.

[27]  Christoph Kreitz,et al.  JProver : Integrating Connection-Based Theorem Proving into Interactive Proof Assistants , 2001, IJCAR.

[28]  M. A. McRobbie,et al.  Automated Deduction — Cade-13 , 1996, Lecture Notes in Computer Science.

[29]  Wolfgang Bibel,et al.  SETHEO: A high-performance theorem prover , 1992, Journal of Automated Reasoning.

[30]  Peter H. Schmitt,et al.  The liberalized δ-rule in free variable semantic tableaux , 2004, Journal of Automated Reasoning.

[31]  Larry Wos,et al.  What Is Automated Reasoning? , 1987, J. Autom. Reason..

[32]  G. Gentzen Untersuchungen über das logische Schließen. I , 1935 .

[33]  Christoph Kreitz,et al.  T-String Unification: Unifying Prefixes in Non-classical Proof Methods , 1996, TABLEAUX.

[34]  Jens Otten,et al.  linTAP: A Tableau Prover for Linear Logic , 1999, TABLEAUX.

[35]  Jens Otten ileanTAP: An Intuitionistic Theorem Prover , 1997, TABLEAUX.

[36]  Bernhard Beckert Leant a P: Lean Tableau-based Theorem Proving , .

[37]  Seif Haridi,et al.  An Intuitionistic Predicate Logic Theorem Prover , 1989, J. Log. Comput..

[38]  Pierre Castéran,et al.  Interactive Theorem Proving and Program Development , 2004, Texts in Theoretical Computer Science An EATCS Series.