High Performance Conducting Polymer Nanofiber Biosensors for Detection of Biomolecules

Sensitive detection and selective determination of the physiologically important chemicals involved in brain function have drawn much attention for the diagnosis and treatment of brain diseases and neurological disorders. This paper reports a novel method for fabrication of enzyme entrapped-conducting polymer nanofibers that offer higher sensitivity and increased lifetime compared to glucose sensors that are based on conducting polymer films.

[1]  M. Iyo,et al.  Glucose and methionine uptake by rat brain tumor treated with prodrug-activated gene therapy. , 1998, Nuclear medicine and biology.

[2]  David C. Martin,et al.  Electrochemical deposition and characterization of poly(3,4-ethylenedioxythiophene) on neural microelectrode arrays , 2003 .

[3]  M. C. Feiters,et al.  Glucose sensor utilizing polypyrrole incorporated in tract-etch membranes as the mediator , 1992 .

[4]  D. Bélanger,et al.  Electrochemistry of the polypyrrole glucose oxidase electrode , 1989 .

[5]  B. Piro,et al.  A glucose biosensor based on modified-enzyme incorporated within electropolymerised poly(3,4-ethylenedioxythiophene) (PEDT) films , 2001 .

[6]  Asha Chaubey,et al.  Application of conducting polymers to biosensors. , 2002, Biosensors & bioelectronics.

[7]  Sejin Park,et al.  Nonenzymatic glucose detection using mesoporous platinum. , 2003, Analytical chemistry.

[8]  G. S. Wilson,et al.  Pulsed amperometric detection of glucose in biological fluids at a surface-modified gold electrode. , 1989, Analytical chemistry.

[9]  V. Hasırcı,et al.  Immobilization of glucose oxidase: a comparison of entrapment and covalent bonding. , 2007, Journal of chemical technology and biotechnology.

[10]  George G. Malliaras,et al.  Organic Electronics at the Interface with Biology , 2010 .

[11]  Najm Nico Sommerdijk,et al.  Poly(3,4‐ethylenedioxythiophene)‐Based Glucose Biosensors , 2001 .

[12]  J. Reynolds,et al.  Electrochemistry of Poly(3,4‐alkylenedioxythiophene) Derivatives , 2003 .

[13]  David C. Martin,et al.  Chronic neural recordings using silicon microelectrode arrays electrochemically deposited with a poly(3,4-ethylenedioxythiophene) (PEDOT) film , 2006, Journal of neural engineering.

[14]  David C. Martin,et al.  Experimental and theoretical characterization of implantable neural microelectrodes modified with conducting polymer nanotubes. , 2008, Biomaterials.

[15]  Hitoshi Yamato,et al.  Stability of polypyrrole and poly(3,4-ethylenedioxythiophene) for biosensor application , 1995 .

[16]  C. G. Zoski Ultramicroelectrodes: Design, Fabrication, and Characterization , 2002 .

[17]  Elsevier Sdol Sensors and Actuators A: Physical , 2009 .

[18]  L. H. Jimison,et al.  Validation of the organic electrochemical transistor for in vitro toxicology. , 2013, Biochimica et biophysica acta.

[19]  J. Reynolds,et al.  Poly(3,4‐ethylenedioxythiophene) and Its Derivatives: Past, Present, and Future , 2000 .

[20]  Mohammad Reza Abidian,et al.  Multifunctional Nanobiomaterials for Neural Interfaces , 2009 .

[21]  Mehdi Nikkhah,et al.  Analysis of the passivation layer by testing and modeling a cell impedance micro-sensor , 2010 .

[22]  L. B. Wingard,et al.  Immobilized Glucose Oxidase in the Potentiometric Detection of Glucose , 1984, Applied biochemistry and biotechnology.

[23]  M. Abidian,et al.  Conducting‐Polymer Nanotubes for Controlled Drug Release , 2006, Advanced materials.

[24]  D. Tyler,et al.  Electrodes for the Neural Interface , 2009 .

[25]  Kuo-Chuan Ho,et al.  Amperometric Glucose Biosensor Based on Entrapment of Glucose Oxidase in a Poly(3,4‐ethylenedioxythiophene) Film , 2006 .

[26]  N. Oyama,et al.  Electrochemical studies of fused-pyrrole systems , 1987 .

[27]  M. N. Myers,et al.  Theoretical and experimental characterization of flow field-flow fractionation , 1976 .

[28]  Rajesh,et al.  Biomolecular immobilization on conducting polymers for biosensing applications. , 2007, Biomaterials.

[29]  Daryl R. Kipke,et al.  Conducting-polymer nanotubes improve electrical properties, mechanical adhesion, neural attachment, and neurite outgrowth of neural electrodes. , 2010, Small.

[30]  V. Hasırcı,et al.  Matrix entrapment of glucose oxidase by γ irradiation , 1992 .

[31]  G. Wallace,et al.  Conducting polymers for neural interfaces: challenges in developing an effective long-term implant. , 2008, Biomaterials.

[32]  Jean-Michel Savéant,et al.  Fast kinetics by means of direct and indirect electrochemical techniques , 1990 .

[33]  Mei Gao,et al.  Glucose sensors based on glucose-oxidase-containing polypyrrole/aligned carbon nanotube coaxial nanowire electrodes , 2003 .

[34]  R. Adams,et al.  Probing brain chemistry with electroanalytical techniques. , 1976, Analytical chemistry.

[35]  S. Lippard,et al.  Meeting of the minds: Metalloneurochemistry , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Piers Andrew,et al.  Electrochemical biosensors at the nanoscale. , 2009, Lab on a chip.

[37]  Maurizio Prato,et al.  Functionalised single wall carbon nanotubes/polypyrrole composites for the preparation of amperometric glucose biosensors , 2004 .

[38]  Gordon G. Wallace,et al.  Conducting electroactive polymer-based biosensors , 1999 .

[39]  Mu Shaolin,et al.  BIOELECTROCHEMICAL RESPONSES OF THE POLYANILINE GLUCOSE OXIDASE ELECTRODE , 1991 .

[40]  K. O’Phelan,et al.  Alterations in Cerebral Oxidative Metabolism following Traumatic Brain Injury , 2011, Neurocritical care.

[41]  D. Robinson,et al.  The electrical properties of metal microelectrodes , 1968 .

[42]  D. Pletcher,et al.  The electrodeposition of poly-N-methylpyrrole films from aqueous solutions , 1984 .

[43]  A. Ramanavičius,et al.  Electrochemical sensors based on conducting polymer—polypyrrole , 2006 .

[44]  Kip A Ludwig,et al.  Interfacing Conducting Polymer Nanotubes with the Central Nervous System: Chronic Neural Recording using Poly(3,4‐ethylenedioxythiophene) Nanotubes , 2009, Advanced materials.

[45]  R. Korus,et al.  Gel entrapment of enzymes: Kinetic studies of immobilized glucose oxidase , 1974, Biotechnology and bioengineering.

[46]  R. Lal,et al.  A biosensor array based on polyaniline. , 1996, Analytical chemistry.

[47]  Alexander Kros,et al.  Poly(pyrrole) versus poly(3,4-ethylenedioxythiophene): implications for biosensor applications , 2005 .

[48]  Nigel H Lovell,et al.  Impact of co-incorporating laminin peptide dopants and neurotrophic growth factors on conducting polymer properties. , 2010, Acta biomaterialia.

[49]  Conan K. N. Li The glucose distribution in 9l rat brain multicell tumor spheroids and its effect on cell necrosis , 1982, Cancer.

[50]  T. L. Park,et al.  Glucose metabolic changes in nontumoral brain tissue of patients with brain tumor following radiotherapy: a preliminary study. , 1996, Journal of computer assisted tomography.

[51]  D. Bélanger,et al.  Characterization of the biochemical behavior of glucose oxidase entrapped in a polypyrrole film , 1991, Biotechnology and bioengineering.

[52]  George G. Malliaras,et al.  Simple glucose sensors with micromolar sensitivity based on organic electrochemical transistors , 2007 .

[53]  M. Prato,et al.  A glutathione amperometric biosensor based on an amphiphilic fullerene redox mediator immobilised within an amphiphilic polypyrrole film , 2002 .

[54]  Gordon G. Wallace,et al.  Amperometric Glucose Biosensor on Layer by Layer Assembled Carbon Nanotube and Polypyrrole Multilayer Film , 2008 .

[55]  K. Balasubramanian,et al.  Challenges in the use of 1D nanostructures for on-chip biosensing and diagnostics: a review. , 2010, Biosensors & bioelectronics.

[56]  G. S. Wilson,et al.  Biosensors for real-time in vivo measurements. , 2005, Biosensors & bioelectronics.