How do different densities in a network affect the optimal location of service centers

The p-median problem is often used to locate p service centers by minimizing their distances to a geographically distributed demand (n). The optimal locations are sensitive to geographical context ...

[1]  O. Kariv,et al.  An Algorithmic Approach to Network Location Problems. II: The p-Medians , 1979 .

[2]  James G. Morris,et al.  On the Extent to Which Certain Fixed-Charge Depot Location Problems can be Solved by LP , 1978 .

[3]  Nicos Christofides,et al.  A tree search algorithm for the p-median problem , 1982 .

[4]  Fernando Y. Chiyoshi,et al.  A statistical analysis of simulated annealing applied to the p-median problem , 2000, Ann. Oper. Res..

[5]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[6]  Mengjie Han,et al.  Does Euclidean distance work well when the p-median model is applied in rural areas? , 2012, Ann. Oper. Res..

[7]  Dominique Peeters,et al.  The Effect of Spatial Structure on p-Median Results , 1995, Transp. Sci..

[8]  HansenPierre,et al.  Cooperative Parallel Variable Neighborhood Search for the p-Median , 2004 .

[9]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[10]  S. Hakimi Optimum Distribution of Switching Centers in a Communication Network and Some Related Graph Theoretic Problems , 1965 .

[11]  Roberto D. Galvão,et al.  A Dual-Bounded Algorithm for the p-Median Problem , 1980, Oper. Res..

[12]  Pierre Hansen,et al.  Solving large p-median clustering problems by primal–dual variable neighborhood search , 2009, Data Mining and Knowledge Discovery.

[13]  David A. Schilling,et al.  Network distance characteristics that affect computational effort in p-median location problems , 2000, Eur. J. Oper. Res..

[14]  S. L. HAKIMIt AN ALGORITHMIC APPROACH TO NETWORK LOCATION PROBLEMS. , 1979 .

[15]  Alfred A. Kuehn,et al.  A Heuristic Program for Locating Warehouses , 1963 .

[16]  David K. Smith,et al.  A Comparison of Two Heuristic Methods for the p‐Median Problem with and without Maximum Distance Constraints , 1991 .

[17]  R.M.J. Heuts,et al.  A modified simple heuristic for the p-median problem, with facilities design applications , 2005 .

[18]  Richard L. Church,et al.  Applying simulated annealing to location-planning models , 1996, J. Heuristics.

[19]  Saudi Arabia,et al.  Simulated Annealing Metaheuristic for Solving P-Median Problem 1 , 2008 .

[20]  Timothy J. Lowe,et al.  Aggregation error for location models: survey and analysis , 2009, Ann. Oper. Res..

[21]  Roy E. Marsten,et al.  An Algorithm for Finding Almost All Of The Medians of a Network , 1972 .

[22]  Igor Vasil'ev,et al.  An aggregation heuristic for large scale p-median problem , 2012, Comput. Oper. Res..

[23]  F. E. Maranzana,et al.  On the Location of Supply Points to Minimize Transport Costs , 1964 .

[24]  Mark Goh,et al.  Covering problems in facility location: A review , 2012, Comput. Ind. Eng..

[25]  J. Current,et al.  An efficient tabu search procedure for the p-Median Problem , 1997 .

[26]  S. L. Hakimi,et al.  Optimum Locations of Switching Centers and the Absolute Centers and Medians of a Graph , 1964 .