Properties of sizeable [n]cycloparaphenylenes as molecular models of single-wall carbon nanotubes elucidated by Raman spectroscopy: structural and electron-transfer responses under mechanical stress.

[n]Cycloparaphenylenes behave as molecular templates of "perfectly chemically defined" single-wall carbon nanotubes. These [n]CPP molecules have electronic, mechanical, and chemical properties in size correspondence with their giant congeners. Under mechanical stress, they form charge-transfer salts, or complexes with fullerene, by one-electron concave-convex electron transfer.

[1]  H. Takaya,et al.  Isolation and characterization of the cycloparaphenylene radical cation and dication. , 2013, Angewandte Chemie.

[2]  M. Rümmeli,et al.  High-Pressure Optical Microspectroscopy Study on Single-Walled Carbon Nanotubes Encapsulating C60 , 2013 .

[3]  Bryan M. Wong,et al.  Photophysical and theoretical investigations of the [8]cycloparaphenylene radical cation and its charge-resonance dimer , 2013 .

[4]  K. Itami,et al.  Initiation of carbon nanotube growth by well-defined carbon nanorings. , 2013, Nature chemistry.

[5]  R. Jasti,et al.  Tightening of the nanobelt upon multielectron reduction. , 2013, Angewandte Chemie.

[6]  M. Zheng,et al.  Fundamental optical processes in armchair carbon nanotubes. , 2012, Nanoscale.

[7]  S. Irle,et al.  Origin of the size-dependent fluorescence blueshift in [n]cycloparaphenylenes , 2013 .

[8]  R. Jasti,et al.  Bending benzene: syntheses of [n]cycloparaphenylenes. , 2012, The Journal of organic chemistry.

[9]  Julong He,et al.  High-pressure behaviors of carbon nanotubes , 2012, Journal of Superhard Materials.

[10]  Y. Kanemitsu,et al.  Excited States in Cycloparaphenylenes: Dependence of Optical Properties on Ring Length. , 2012, The journal of physical chemistry letters.

[11]  R. Jasti,et al.  Gram-scale synthesis and crystal structures of [8]- and [10]CPP, and the solid-state structure of C60@[10]CPP , 2012 .

[12]  S. Irle,et al.  Combined experimental and theoretical studies on the photophysical properties of cycloparaphenylenes. , 2012, Organic & biomolecular chemistry.

[13]  Uwe H. F. Bunz,et al.  para‐Verknüpfte Cyclophenylene und halbkugelförmige Polyarene: Bausteine für einwandige Kohlenstoffnanoröhren? , 2012 .

[14]  U. Bunz,et al.  para-Connected cyclophenylenes and hemispherical polyarenes: building blocks for single-walled carbon nanotubes? , 2012, Angewandte Chemie.

[15]  H. Frauenrath,et al.  Elemente für ein rationales Polymerverfahren zur Synthese von Kohlenstoffnanostrukturen , 2012 .

[16]  H. Frauenrath,et al.  Elements for a rational polymer approach towards carbon nanostructures. , 2012, Angewandte Chemie.

[17]  Toshiyasu Suzuki,et al.  Selective synthesis and crystal structure of [10]cycloparaphenylene. , 2012, Organic letters.

[18]  H. Shinohara,et al.  Size-selective synthesis of [9]–[11] and [13]cycloparaphenylenes , 2012 .

[19]  K. Itami,et al.  Synthesis of cycloparaphenylenes and related carbon nanorings: a step toward the controlled synthesis of carbon nanotubes. , 2012, Accounts of chemical research.

[20]  R. Jasti,et al.  Synthesis, characterization, and crystal structure of [6]cycloparaphenylene. , 2012, Angewandte Chemie.

[21]  R. Jasti,et al.  Overcoming Molecular Strain:Synthesis of [7]Cycloparaphenylene , 2012 .

[22]  J. T. López Navarrete,et al.  The frontiers of quinoidal stability in long oligothiophenes: Raman spectra of dicationic polaron pairs. , 2011, Journal of the American Chemical Society.

[23]  Matthew R. Golder,et al.  Selective synthesis of strained [7]cycloparaphenylene: an orange-emitting fluorophore. , 2011, Journal of the American Chemical Society.

[24]  S. Yamago,et al.  Size-selective encapsulation of C60 by [10]cycloparaphenylene: formation of the shortest fullerene-peapod. , 2011, Angewandte Chemie.

[25]  Toshiyasu Suzuki,et al.  Selective and random syntheses of [n]cycloparaphenylenes (n=8-13) and size dependence of their electronic properties. , 2011, Journal of the American Chemical Society.

[26]  N. Tokitoh,et al.  Concise synthesis and crystal structure of [12]cycloparaphenylene. , 2011, Angewandte Chemie.

[27]  R. Capaz,et al.  Pressure-Induced Collapse in Double-Walled Carbon Nanotubes: Chemical and Mechanical Screening Effects , 2011 .

[28]  K. Itami,et al.  A modular and size-selective synthesis of [n]cycloparaphenylenes: a step toward the selective synthesis of [n,n] single-walled carbon nanotubes. , 2010, Angewandte Chemie.

[29]  Riichiro Saito,et al.  Characterizing Graphene, Graphite, and Carbon Nanotubes by Raman Spectroscopy , 2010 .

[30]  C. Bertozzi,et al.  Progress and Challenges for the Bottom-Up Synthesis of Carbon Nanotubes with Discrete Chirality. , 2010, Chemical physics letters.

[31]  K. Itami,et al.  Theoretical studies on the structures and strain energies of cycloparaphenylenes. , 2010, Organic letters.

[32]  S. Yamago,et al.  Synthesis of [8]cycloparaphenylene from a square-shaped tetranuclear platinum complex. , 2010, Angewandte Chemie.

[33]  Yosuke Yamamoto,et al.  Selective synthesis of [12]cycloparaphenylene. , 2009, Angewandte Chemie.

[34]  Peter J. F. Harris,et al.  Carbon Nanotube Science: Frontmatter , 2009 .

[35]  C. Bertozzi,et al.  Synthesis, Characterization, and Theory of [9]-, [12]-, and [18]Cycloparaphenylene: Carbon Nanohoop Structures , 2008, Journal of the American Chemical Society.

[36]  G. Zou,et al.  Raman signature to identify the structural transition of single-wall carbon nanotubes under high pressure , 2008 .

[37]  E. Flahaut,et al.  Raman spectra of double-wall carbon nanotubes under extreme uniaxial stress. , 2008, Nano letters.

[38]  L. Hermosilla,et al.  Raman detection of "ambiguous" conjugated biradicals: rapid thermal singlet-to-triplet intersystem crossing in an extended viologen. , 2008, Angewandte Chemie.

[39]  Alfonso San-Miguel Nanomaterials under high-pressure. , 2006, Chemical Society reviews.

[40]  M. O'connell,et al.  Carbon Nanotubes Properties and Applications , 2006 .

[41]  J. Brédas,et al.  Effective conjugation and Raman intensities in oligo(para-phenylene)s: a microscopic view from first-principles calculations. , 2005, The Journal of chemical physics.

[42]  M. Taravillo,et al.  Diamond as pressure sensor in high‐pressure Raman spectroscopy using sapphire and other gem anvil cells , 2003 .

[43]  C. Thomsen Raman Scattering in Carbon Nanotubes , 2003 .

[44]  Bennett B. Goldberg,et al.  G-band resonant Raman study of 62 isolated single-wall carbon nanotubes , 2002 .

[45]  M. Monthioux,et al.  Encapsulated C60 in carbon nanotubes , 1998, Nature.

[46]  T. Ebbesen Physical Properties of Carbon Nanotubes , 1997 .

[47]  M. Dresselhaus,et al.  Raman Scattering in Fullerenes , 1996 .

[48]  M. Kertész,et al.  Role of charge transfer and quinonoid structure in the Raman spectrum of doped poly(p-phenylene) , 1994 .