Information Visualization: Which Is the Most Appropriate Technique to Represent Data Mining Results?

Data mining (DM) is a research area that has been contributing in the search for implicit knowledge that can give support to decision making. However, the analysis of the results obtained by using the techniques of DM is not an easy task. Such difficulty can be minimized, by using techniques of information visualization. But the issue is: which will be the most appropriate technique for each type of result to be analyzed? To help in the choice of techniques, this paper presents an evaluation of techniques for information visualization. Such task was accomplished by using the method known as analysis of characteristics, having as result the analysis on the effectiveness when using techniques of geometric and iconographical information visualization, mainly in relation to the results obtained with the application of k-means algorithm.

[1]  Edward J. Wegman,et al.  High Dimensional Clustering Using Parallel Coordinates and the Grand Tour , 1997 .

[2]  José Fernando,et al.  Desenvolvimento de um Framework para Análise Visual de Informações Suportando Data Mining , 2003 .

[3]  Christos Faloutsos,et al.  Data Visualization in RDBMS , 2002, ISDB.

[4]  Carla Maria Dal Sasso Freitas,et al.  Introdução à visualização de informações , 2001 .

[5]  Alfred Inselberg,et al.  Parallel coordinates: a tool for visualizing multi-dimensional geometry , 1990, Proceedings of the First IEEE Conference on Visualization: Visualization `90.

[6]  Cristina Santos Visualização tridimensional de grandes volumes de informação , 1999 .

[7]  Daniel A. Keim,et al.  Information Visualization and Visual Data Mining , 2002, IEEE Trans. Vis. Comput. Graph..

[8]  Ganesh S. Oak Information Visualization Introduction , 2022 .

[9]  Jean-Daniel Fekete,et al.  Interactive information visualization of a million items , 2002, IEEE Symposium on Information Visualization, 2002. INFOVIS 2002..

[10]  Alfred Inselberg,et al.  Parallel coordinates for visualizing multi-dimensional geometry , 1987 .

[11]  Christian Böhm,et al.  Dynamically Optimizing High-Dimensional Index Structures , 2000, EDBT.

[12]  David S. Ebert,et al.  Procedural Shape Generation for Multi-dimensional Data Visualization , 1999, VisSym.

[13]  Hans-Peter Kriegel,et al.  Visualization Techniques for Mining Large Databases: A Comparison , 1996, IEEE Trans. Knowl. Data Eng..

[14]  R. Kosara,et al.  Parallel sets: visual analysis of categorical data , 2005, IEEE Symposium on Information Visualization, 2005. INFOVIS 2005..

[15]  Herman Chernoff,et al.  The Use of Faces to Represent Points in k- Dimensional Space Graphically , 1973 .

[16]  Charles E. Heckler,et al.  Applied Multivariate Statistical Analysis , 2005, Technometrics.

[17]  Jonathan Goldstein,et al.  When Is ''Nearest Neighbor'' Meaningful? , 1999, ICDT.

[18]  Michael D. Lee,et al.  An Empirical Evaluation of Chernoff Faces, Star Glyphs, and Spatial Visualisations for Binary Data , 2003, InVis.au.

[19]  Luiz Fernando Estivalet O Uso de ícones na visualização de informações , 2000 .

[20]  Haim Levkowitz,et al.  From Visual Data Exploration to Visual Data Mining: A Survey , 2003, IEEE Trans. Vis. Comput. Graph..

[21]  Milton Hirokazu Shimabukuro Temporal visualizations in an extensible and adaptable software platform (Visualizações temporais em uma plataforma de software extensível e adaptável) , 2004 .

[22]  Matthew O. Ward,et al.  XmdvTool: visual interactive data exploration and trend discovery of high-dimensional data sets , 2002, SIGMOD '02.