Consistency and structural uncertainty of multi-mission GPS radio occultation records

Abstract. Atmospheric climate monitoring requires observations of high quality that conform to the criteria of the Global Climate Observing System (GCOS). Radio occultation (RO) data based on Global Positioning System (GPS) signals are available since 2001 from several satellite missions with global coverage, high accuracy, and high vertical resolution in the troposphere and lower stratosphere. We assess the consistency and long-term stability of multi-satellite RO observations for use as climate data records. As a measure of long-term stability, we quantify the structural uncertainty of RO data products arising from different processing schemes. We analyze atmospheric variables from bending angle to temperature for four RO missions, CHAMP, Formosat-3/COSMIC, GRACE, and Metop, provided by five data centers. The comparisons are based on profile-to-profile differences aggregated to monthly medians. Structural uncertainty in trends is found to be lowest from 8 to 25 km of altitude globally for all inspected RO variables and missions. For temperature, it is < 0.05 K per decade in the global mean and < 0.1 K per decade at all latitudes. Above 25 km, the uncertainty increases for CHAMP, while data from the other missions – based on advanced receivers – are usable to higher altitudes for climate trend studies: dry temperature to 35 km, refractivity to 40 km, and bending angle to 50 km. Larger differences in RO data at high altitudes and latitudes are mainly due to different implementation choices in the retrievals. The intercomparison helped to further enhance the maturity of the RO record and confirms the climate quality of multi-satellite RO observations towards establishing a GCOS climate data record.

[1]  S. B. Healy,et al.  Refractivity coefficients used in the assimilation of GPS radio occultation measurements , 2011 .

[2]  Impact of FORMOSAT-3/COSMIC Data on Typhoon and Mei-yu Prediction , 2009 .

[3]  Ernest K. Smith,et al.  The Constants in the Equation for Atmospheric Refractive Index at Radio Frequencies , 1953, Proceedings of the IRE.

[4]  Barbara Scherllin-Pirscher,et al.  The power of vertical geolocation of atmospheric profiles from GNSS radio occultation , 2017, Journal of geophysical research. Atmospheres : JGR.

[5]  J. Wickert,et al.  Reproducibility of GPS radio occultation data for climate monitoring: Profile‐to‐profile inter‐comparison of CHAMP climate records 2002 to 2008 from six data centers , 2012 .

[6]  Ying-Hwa Kuo,et al.  Estimating the uncertainty of using GPS radio occultation data for climate monitoring: Intercomparison of CHAMP refractivity climate records from 2002 to 2006 from different data centers , 2009 .

[7]  Ying-Hwa Kuo,et al.  Quantifying uncertainty in climatological fields from GPS radio occultation: an empirical-analytical error model , 2011 .

[8]  C. Ao,et al.  Temperature Trends and Anomalies in Modern Satellite Data: Infrared Sounding and GPS Radio Occultation , 2018, Journal of Geophysical Research: Atmospheres.

[9]  Y. Kuo,et al.  Ionospheric correction of GPS radio occultation data in the troposphere , 2015 .

[10]  Bruce A. Wielicki,et al.  Numerical Terradynamic Simulation Group 2011 Challenges of a Sustained Climate Observing System , 2018 .

[11]  Gottfried Kirchengast,et al.  Inversion, error analysis, and validation of GPS/MET occultation data , 1999 .

[12]  A. Mannucci,et al.  Evaluation of CMIP5 upper troposphere and lower stratosphere geopotential height with GPS radio occultation observations , 2015 .

[13]  Holger Vömel,et al.  Characterization of the long-term radiosonde temperature biases in the upper troposphere and lower stratosphere using COSMIC and Metop-A/GRAS data from 2006 to 2014 , 2017 .

[14]  J. Dykema,et al.  Climate Benchmarking Using GNSS Occultation , 2006 .

[15]  Peter W. Thorne,et al.  Revisiting radiosonde upper air temperatures from 1958 to 2002 , 2005 .

[16]  Ying-Hwa Kuo,et al.  Global Evaluation of Radiosonde Water Vapor Systematic Biases using GPS Radio Occultation from COSMIC and ECMWF Analysis , 2010, Remote. Sens..

[17]  J. Thepaut,et al.  A reassessment of temperature variations and trends from global reanalyses and monthly surface climatological datasets , 2017 .

[18]  Ying-Hwa Kuo,et al.  Assessment of radiosonde temperature measurements in the upper troposphere and lower stratosphere using COSMIC radio occultation data , 2009 .

[19]  Christian Rocken,et al.  The COSMIC/FORMOSAT-3 Mission: Early Results , 2008 .

[20]  Rolf König,et al.  Remarks on CHAMP Orbit Products , 2006 .

[21]  Grzegorz Michalak,et al.  GPS radio occultation: results from CHAMP, GRACE and FORMOSAT-3/COSMIC. , 2009 .

[22]  W. Bertiger,et al.  A technical description of atmospheric sounding by GPS occultation , 2002 .

[23]  Jens Wickert,et al.  GPS radio occultation with CHAMP and SAC-C: global monitoring of thermal tropopause parameters , 2005 .

[24]  M. E. Gorbunov,et al.  Canonical transform method for processing radio occultation data in the lower troposphere , 2002 .

[25]  Gottfried Kirchengast,et al.  An assessment of differences in lower stratospheric temperature records from (A)MSU, radiosondes, and GPS radio occultation , 2011 .

[26]  H. Benzon,et al.  Geometrical optics phase matching of radio occultation signals , 2004 .

[27]  Gottfried Kirchengast,et al.  A multi-year comparison of lower stratospheric temperatures from CHAMP radio occultation data with MSU/AMSU records , 2007 .

[28]  Peter Bauer,et al.  GNSS Radio Occultation Constellation Observing System Experiments , 2014 .

[29]  Explore Configuring A Simulation Study to , 2004 .

[30]  Wolfgang Wagner,et al.  Uncertainty information in climate data records from Earth observation , 2017 .

[31]  Ying-Hwa Kuo,et al.  Observing the moist troposphere with radio occultation signals from COSMIC , 2007 .

[32]  O. Montenbruck,et al.  Springer Handbook of Global Navigation Satellite Systems , 2017 .

[33]  Rolf König,et al.  The Radio Occultation Experiment aboard CHAMP: Operational Data Analysis and Validation of Vertical Atmospheric Profiles , 2004 .

[34]  C. Ao,et al.  Estimation of Winds from GPS Radio Occultations , 2014 .

[35]  Lennart Bengtsson,et al.  GNSS Occultation Sounding for Climate Monitoring , 2001 .

[36]  V. V. Vorob’ev,et al.  Estimation of the accuracy of the atmospheric refractive index recovery from Doppler shift measurements at frequencies used in the NAVSTAR system , 1994 .

[37]  Ying-Hwa Kuo,et al.  Improvements in Typhoon Forecasts with Assimilated GPS Occultation Refractivity , 2005 .

[38]  W. G. Melbourne,et al.  GPS precise tracking of TOPEX/POSEIDON: Results and implications , 1994 .

[39]  M. Gorbunov,et al.  Wave-optics uncertainty propagation and regression-based bias model in GNSS radio occultation bending angle retrievals , 2017 .

[40]  Y. Kuo,et al.  Improved Analyses and Forecasts of Hurricane Ernesto's Genesis Using Radio Occultation Data in an Ensemble Filter Assimilation System , 2012 .

[41]  C. Marquardt,et al.  Forecast impact experiment with GPS radio occultation measurements , 2005 .

[42]  X. Zou,et al.  Analysis and validation of GPS/MET data in the neutral atmosphere , 1997 .

[43]  J. Aparicio,et al.  An evaluation of the expression of the atmospheric refractivity for GPS signals , 2011 .

[44]  U. Foelsche,et al.  Atmospheric temperature change detection with GPS radio occultation 1995 to 2008 , 2009 .

[45]  Jeffrey L. Privette,et al.  A maturity model for assessing the completeness of climate data records , 2012 .

[46]  Sergey Sokolovskiy,et al.  Representation of Vertical Atmospheric Structures by Radio Occultation Observations in the Upper Troposphere and Lower Stratosphere: Comparison to High-Resolution Radiosonde Profiles , 2019, Journal of Atmospheric and Oceanic Technology.

[47]  Ying-Hwa Kuo,et al.  Calibration of temperature in the lower stratosphere from microwave measurements using COSMIC radio occultation data: Preliminary results , 2009 .

[48]  Stig Syndergaard,et al.  Modeling the impact of the Earth's oblateness on the retrieval of temperature and pressure profiles from limb sounding , 1998 .

[49]  Xinan Yue,et al.  The COSMIC/FORMOSAT-3 Radio Occultation Mission after 12 Years: Accomplishments, Remaining Challenges, and Potential Impacts of COSMIC-2 , 2020, Bulletin of the American Meteorological Society.

[50]  Ying Li,et al.  Dynamic statistical optimization of GNSS radio occultation bending angles: advanced algorithm and performance analysis , 2015 .

[51]  Bruce A. Wielicki,et al.  Satellite Instrument Calibration for Measuring Global Climate Change: Report of a Workshop , 2004 .

[52]  Steven Businger,et al.  GPS Sounding of the Atmosphere from Low Earth Orbit: Preliminary Results , 1996 .

[53]  Barbara Scherllin-Pirscher,et al.  GPS radio occultation for climate monitoring and change detection , 2011 .

[54]  Jens Wickert,et al.  Global tropopause height trends estimated from GPS radio occultation data , 2008 .

[55]  Ying-Hwa Kuo,et al.  Empirical analysis and modeling of errors of atmospheric profiles from GPS radio occultation , 2011 .

[56]  B. Scherllin-Pirscher,et al.  Quality aspects of the Wegener Center multi-satellite GPS radio occultation record OPSv5.6 , 2017 .

[57]  William J. Emery,et al.  Achieving satellite instrument calibration for climate change , 2007 .

[58]  Jens Wickert,et al.  Variability of the upper troposphere and lower stratosphere observed with GPS radio occultation bending angles and temperatures , 2010 .

[59]  Ying-Hwa Kuo,et al.  Marine Boundary Layer Heights and Their Longitudinal, Diurnal, and Interseasonal Variability in the Southeastern Pacific Using COSMIC, CALIOP, and Radiosonde Data , 2015 .

[60]  Fei Wu,et al.  Thermal variability of the tropical tropopause region derived from GPS/MET observations , 2003 .

[61]  G. Kirchengast,et al.  Integrating uncertainty propagation in GNSS radio occultation retrieval: From bending angle to dry‐air atmospheric profiles , 2017 .

[62]  Y. Kuo,et al.  Systematic evaluation of the impacts of GPSRO data on the prediction of typhoons over the northwestern Pacific in 2008–2010 , 2015 .

[63]  Ying-Hwa Kuo,et al.  Analysis of GPS radio occultation data from the FORMOSAT-3/COSMIC and Metop/GRAS missions at CDAAC , 2011 .

[64]  Guanglin Yang,et al.  The FengYun-3C radio occultation sounder GNOS: a review of the mission and its early results and science applications , 2018, Atmospheric Measurement Techniques.

[65]  Barbara Scherllin-Pirscher,et al.  Characteristics of tropopause parameters as observed with GPS radio occultation , 2014 .

[66]  Alain Hauchecorne,et al.  Postmillennium changes in stratospheric temperature consistently resolved by GPS radio occultation and AMSU observations , 2017 .

[67]  L. Cucurull Improvement in the Use of an Operational Constellation of GPS Radio Occultation Receivers in Weather Forecasting , 2010 .

[68]  W. G. Melbourne,et al.  The application of spaceborne GPS to atmospheric limb sounding and global change monitoring , 1994 .

[69]  Juha-Pekka Luntama,et al.  Prospects of the EPS GRAS Mission For Operational Atmospheric Applications , 2008 .

[70]  Robert Pincus,et al.  The Representation of Tropospheric Water Vapor Over Low-Latitude Oceans in (Re-)analysis: Errors, Impacts, and the Ability to Exploit Current and Prospective Observations , 2017, Surveys in Geophysics.

[71]  Paul Poli,et al.  Assimilation of Global Positioning System radio occultation data in the ECMWF ERA–Interim reanalysis , 2010 .

[72]  S. B. Healy,et al.  A simulation study with a new residual ionospheric error model for GPS radio occultation climatologies , 2015 .

[73]  E. Robert Kursinski,et al.  A Method to Deconvolve Errors in GPS RO-Derived Water Vapor Histograms , 2014 .

[74]  S. Syndergaard,et al.  Generation of a bending angle radio occultation climatology (BAROCLIM) and its use in radio occultation retrievals , 2014 .

[75]  J. Schofield,et al.  Observing Earth's atmosphere with radio occultation measurements using the Global Positioning System , 1997 .

[76]  Barbara Scherllin-Pirscher,et al.  Deriving dynamics from GPS radio occultation: Three-dimensional wind fields for monitoring the climate , 2014, Geophysical research letters.

[77]  Christian Rocken,et al.  Optimal Noise Filtering for the Ionospheric Correction of GPS Radio Occultation Signals , 2009 .

[78]  J. R. Eyre,et al.  Retrieving temperature, water vapour and surface pressure information from refractive‐index profiles derived by radio occultation: A simulation study , 2000 .

[79]  Guanglin Yang,et al.  Evaluation of atmospheric profiles derived from single- and zero-difference excess phase processing of BeiDou radio occultation data from the FY-3C GNOS mission , 2017 .

[80]  R. Anthes,et al.  Exploring earth's atmosphere with radio occultation: contributions to weather, climate and space weather , 2011 .

[81]  Gottfried Kirchengast,et al.  Atmospheric Climate Change Detection by Radio Occultation Data Using a Fingerprinting Method , 2011 .

[82]  Volker Schwieger,et al.  GPS radio occultation with CHAMP: Atmospheric profiling utilizing the space‐based single difference technique , 2002 .

[83]  G. Kirchengast,et al.  Integrating uncertainty propagation in GNSS radio occultation retrieval: from excess phase to atmospheric bending angle profiles , 2017 .

[84]  B. Christiansen,et al.  Recent global warming hiatus dominated by low‐latitude temperature trends in surface and troposphere data , 2015 .

[85]  H. H. Benzon,et al.  Full Spectrum Inversion of radio occultation signals , 2003 .

[86]  S. B. Healy,et al.  Monitoring twenty‐first century climate using GPS radio occultation bending angles , 2008 .

[87]  J. Wickert,et al.  GPS radio occultation with GRACE: Atmospheric profiling utilizing the zero difference technique , 2004, physics/0409032.

[88]  Carl A. Mears,et al.  Comparison of Global Observations and Trends of Total Precipitable Water Derived from Microwave Radiometers and COSMIC Radio Occultation from 2006 to 2013 , 2017 .

[89]  T. Typhoon Systematic evaluation of the impacts of GPSRO data on the prediction of typhoons over the northwestern Pacific in 2008-2010 , 2015 .

[90]  M. Ringer,et al.  Tropical convection regimes in climate models: evaluation with satellite observations , 2017 .

[91]  M. Gorbunov,et al.  Analysis of wave fields by Fourier integral operators and their application for radio occultations , 2004 .

[92]  S. Healy,et al.  Impact of GPS radio occultation measurements in the ECMWF system using adjoint‐based diagnostics , 2014 .

[93]  Bernhard Hofmann-Wellenhof,et al.  GNSS - Global Navigation Satellite Systems , 2008 .

[94]  M. Gorbunov,et al.  Comparative analysis of radio occultation processing approaches based on Fourier integral operators , 2004 .

[95]  Ying-Hwa Kuo,et al.  Monitoring the atmospheric boundary layer by GPS radio occultation signals recorded in the open‐loop mode , 2006 .

[96]  C. Cardinali Monitoring the observation impact on the short‐range forecast , 2009 .

[97]  Sergey Sokolovskiy,et al.  Quality assessment of COSMIC/FORMOSAT-3 GPS radio occultation data derived from single- and double-difference atmospheric excess phase processing , 2010 .

[98]  Gottfried Kirchengast,et al.  Climate intercomparison of GPS radio occultation, RS90/92 radiosondes and GRUAN from 2002 to 2013 , 2014 .

[99]  Grzegorz Michalak,et al.  GPS radio occultation with CHAMP and GRACE: A first look at a new and promising satellite configuration for global atmospheric sounding , 2005 .

[100]  R. J. Purser,et al.  A bending angle forward operator for global positioning system radio occultation measurements , 2013 .

[101]  H. W. Lewis,et al.  The Radio Occultation Processing Package, ROPP , 2015 .

[102]  Benjamin M. Herman,et al.  An Approach for Retrieving Marine Boundary Layer Refractivity from GPS Occultation Data in the Presence of Superrefraction , 2005 .

[103]  Godelieve Deblonde,et al.  Impact of the Assimilation of CHAMP Refractivity Profiles on Environment Canada Global Forecasts , 2008 .

[104]  A. Kliore,et al.  The neutral atmosphere of Venus as studied with the Mariner V radio occultation experiments , 1971 .

[105]  W. G. Melbourne,et al.  Initial Results of Radio Occultation Observations of Earth's Atmosphere Using the Global Positioning System , 1996, Science.

[106]  B. Scherllin-Pirscher,et al.  The reference occultation processing system approach to interpret GNSS radio occultation as SI-traceable planetary system refractometer , 2016 .

[107]  Ying-Hwa Kuo,et al.  Quantification of structural uncertainty in climate data records from GPS radio occultation , 2012 .

[108]  A. Simmons,et al.  The Concept of Essential Climate Variables in Support of Climate Research, Applications, and Policy , 2014 .

[109]  Josef Innerkofler GNSS Radio Occultation Excess Phase Data including Integrated Uncertainty Estimation and Intercomparison between Processing Centers , 2018 .

[110]  Ying-Hwa Kuo,et al.  Estimating Atmospheric Boundary Layer Depth Using COSMIC Radio Occultation Data , 2011 .

[111]  Anthony J. Mannucci,et al.  Planetary boundary layer heights from GPS radio occultation refractivity and humidity profiles , 2012 .

[112]  Barbara Scherllin-Pirscher,et al.  Refractivity and temperature climate records from multiple radio occultation satellites consistent within 0.05 , 2011 .