Nonlinear spectroscopy of photons bound to one atom

Nonlinear optics traditionally involves macroscopic atomic ensembles or solid-state crystals. The observation of a nonlinear two-photon resonance in a system consisting of one single atom trapped inside an optical cavity demonstrates nonlinear optics at the level of individual quanta.

[1]  D. E. Chang,et al.  A single-photon transistor using nanoscale surface plasmons , 2007, 0706.4335.

[2]  H. Carmichael,et al.  Quantum state reduction and conditional time evolution of wave-particle correlations in cavity QED. , 2000, Physical review letters.

[3]  G. Rempe,et al.  Normal-mode spectroscopy of a single-bound-atom-cavity system. , 2004, Physical review letters.

[4]  Observation of the vacuum Rabi spectrum for one trapped atom. , 2004, Physical review letters.

[5]  V. Kulakovskii,et al.  Strong coupling in a single quantum dot–semiconductor microcavity system , 2004, Nature.

[6]  S. Gulde,et al.  Quantum nature of a strongly coupled single quantum dot–cavity system , 2007, Nature.

[7]  H. J. Kimble,et al.  Photon blockade in an optical cavity with one trapped atom , 2005, Nature.

[8]  Jean-Michel Raimond,et al.  Cavity Quantum Electrodynamics , 1993, Quantum Dynamics of Simple Systems.

[9]  G. Rempe,et al.  Vacuum-stimulated cooling of single atoms in three dimensions , 2005, quant-ph/0506067.

[10]  B. Englert,et al.  Cavity quantum electrodynamics , 2006 .

[11]  Dreyer,et al.  Quantum Rabi oscillation: A direct test of field quantization in a cavity. , 1996, Physical review letters.

[12]  Klein,et al.  Observation of quantum collapse and revival in a one-atom maser. , 1987, Physical review letters.

[13]  King,et al.  Generation of nonclassical motional states of a trapped atom. , 1996, Physical review letters.

[14]  A Lemaître,et al.  Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity. , 2004, Physical review letters.

[15]  Oskar Painter,et al.  Linear and nonlinear optical spectroscopy of a strongly coupled microdisk–quantum dot system , 2007, Nature.

[16]  École d'été de physique théorique,et al.  Systèmes fondamentaux en optique quantique : Les Houches, session LIII, 25 Juin - 27 Juilet 1990 = Fundamental systems in quantum optics , 1992 .

[17]  Dirk Englund,et al.  Controlling cavity reflectivity with a single quantum dot , 2007, Nature.

[18]  L. Orozco,et al.  Nonclassical Intensity Correlations in Cavity QED , 1998 .

[19]  G. Rempe,et al.  Trapping and observing single atoms in a blue-detuned intracavity dipole trap. , 2007, Physical review letters.

[20]  Carmichael,et al.  Photon Correlation Spectroscopy. , 1996, Physical review letters.

[21]  S. Reitzenstein,et al.  Photon antibunching from a single quantum dot-microcavity system in the strong coupling regime , 2007, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[22]  Thompson,et al.  Optical bistability and photon statistics in cavity quantum electrodynamics. , 1991, Physical review letters.

[23]  M. Scully,et al.  Advances in Atomic, Molecular, and Optical Physics , 2022, Advances In Atomic, Molecular, and Optical Physics.

[24]  G. Rupper,et al.  Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity , 2004, Nature.

[25]  H. Kimble,et al.  Nonlinear spectroscopy in the strong-coupling regime of cavity QED , 1998 .

[26]  S. Girvin,et al.  Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics , 2004, Nature.

[27]  P. Knight Fundamental Systems in Quantum Optics , 1993 .

[28]  R. J. Schoelkopf,et al.  Resolving photon number states in a superconducting circuit , 2007, Nature.

[29]  Stephan W Koch,et al.  Vacuum Rabi splitting in semiconductors , 2006 .