Tensor Networks for Dimensionality Reduction and Large-scale Optimization: Part 1 Low-Rank Tensor Decompositions
暂无分享,去创建一个
Andrzej Cichocki | Danilo P. Mandic | Anh Huy Phan | Qibin Zhao | Ivan Oseledets | Namgil Lee | A. Cichocki | D. Mandic | I. Oseledets | Qibin Zhao | A. Phan | Namgil Lee
[1] F. Verstraete,et al. Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems , 2008, 0907.2796.
[2] Andrzej Cichocki,et al. Group Component Analysis for Multiblock Data: Common and Individual Feature Extraction , 2012, IEEE Transactions on Neural Networks and Learning Systems.
[3] S. V. Dolgov,et al. ALTERNATING MINIMAL ENERGY METHODS FOR LINEAR SYSTEMS IN HIGHER DIMENSIONS∗ , 2014 .
[4] Yurii Nesterov,et al. Efficiency of Coordinate Descent Methods on Huge-Scale Optimization Problems , 2012, SIAM J. Optim..
[5] H. Matsueda. Analytic Optimization of a MERA network and its Relevance to Quantum Integrability and Wavelet , 2016, 1608.02205.
[6] Michael K. Ng,et al. Sparse Canonical Correlation Analysis: New Formulation and Algorithm , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[7] Klaus-Robert Müller,et al. Three-Way Analysis of Spectrospatial Electromyography Data: Classification and Interpretation , 2015, PloS one.
[8] Michael W. Mahoney,et al. Spectral Gap Error Bounds for Improving CUR Matrix Decomposition and the Nyström Method , 2015, AISTATS.
[9] Lieven De Lathauwer,et al. Exact line and plane search for tensor optimization , 2013, Computational optimization and applications.
[10] Andrzej Cichocki,et al. Fast Nonnegative Matrix/Tensor Factorization Based on Low-Rank Approximation , 2012, IEEE Transactions on Signal Processing.
[11] Hans-Joachim Bungartz,et al. Acta Numerica 2004: Sparse grids , 2004 .
[12] Christos Faloutsos,et al. Mining billion-scale tensors: algorithms and discoveries , 2016, The VLDB Journal.
[13] Y. Kao,et al. Uni10: an open-source library for tensor network algorithms , 2015 .
[14] L. Mirsky. SYMMETRIC GAUGE FUNCTIONS AND UNITARILY INVARIANT NORMS , 1960 .
[15] Xiao-Gang Wen,et al. Tensor-product representations for string-net condensed states , 2008, 0809.2821.
[16] Andrzej Cichocki,et al. Efficient Nonnegative Tucker Decompositions: Algorithms and Uniqueness , 2014, IEEE Transactions on Image Processing.
[17] De LathauwerLieven. Blind Separation of Exponential Polynomials and the Decomposition of a Tensor in Rank-$(L_r,L_r,1)$ Terms , 2011 .
[18] Rasmus Pagh,et al. Fast and scalable polynomial kernels via explicit feature maps , 2013, KDD.
[19] Petros Drineas,et al. Tensor-CUR Decompositions for Tensor-Based Data , 2008, SIAM J. Matrix Anal. Appl..
[20] André Lima Férrer de Almeida,et al. Overview of constrained PARAFAC models , 2014, EURASIP Journal on Advances in Signal Processing.
[21] Lieven De Lathauwer,et al. Blind Signal Separation via Tensor Decomposition With Vandermonde Factor: Canonical Polyadic Decomposition , 2013, IEEE Transactions on Signal Processing.
[22] David F. Gleich,et al. Model Reduction With MapReduce-enabled Tall and Skinny Singular Value Decomposition , 2013, SIAM J. Sci. Comput..
[23] Liqing Zhang,et al. Tensor Ring Decomposition , 2016, ArXiv.
[24] Pierre-Antoine Absil,et al. Robust Low-Rank Matrix Completion by Riemannian Optimization , 2016, SIAM J. Sci. Comput..
[25] Florian Roemer,et al. Higher-Order SVD-Based Subspace Estimation to Improve the Parameter Estimation Accuracy in Multidimensional Harmonic Retrieval Problems , 2008, IEEE Transactions on Signal Processing.
[26] Andrzej Cichocki,et al. Fast Local Algorithms for Large Scale Nonnegative Matrix and Tensor Factorizations , 2009, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..
[27] Pierre Comon,et al. Independent component analysis, A new concept? , 1994, Signal Process..
[28] J. H. Choi,et al. DFacTo: Distributed Factorization of Tensors , 2014, NIPS.
[29] A. Cichocki,et al. Generalizing the column–row matrix decomposition to multi-way arrays , 2010 .
[30] Eugene E. Tyrtyshnikov,et al. Breaking the Curse of Dimensionality, Or How to Use SVD in Many Dimensions , 2009, SIAM J. Sci. Comput..
[31] Boris N. Khoromskij,et al. Computation of extreme eigenvalues in higher dimensions using block tensor train format , 2013, Comput. Phys. Commun..
[32] R. Schneider,et al. Tree Tensor Network State with Variable Tensor Order: An Efficient Multireference Method for Strongly Correlated Systems , 2015, Journal of chemical theory and computation.
[33] Lieven De Lathauwer,et al. Decompositions of a Higher-Order Tensor in Block Terms - Part I: Lemmas for Partitioned Matrices , 2008, SIAM J. Matrix Anal. Appl..
[34] Andrzej Cichocki,et al. Stable, Robust, and Super Fast Reconstruction of Tensors Using Multi-Way Projections , 2014, IEEE Transactions on Signal Processing.
[35] F. L. Hitchcock. Multiple Invariants and Generalized Rank of a P‐Way Matrix or Tensor , 1928 .
[36] Michael W. Mahoney,et al. Future Directions in Tensor-Based Computation and Modeling , 2009 .
[37] Mario Bebendorf,et al. Adaptive Cross Approximation of Multivariate Functions , 2011 .
[38] A. Cichocki,et al. Tensor decompositions for feature extraction and classification of high dimensional datasets , 2010 .
[39] Garnet Kin-Lic Chan,et al. Efficient tree tensor network states (TTNS) for quantum chemistry: generalizations of the density matrix renormalization group algorithm. , 2013, The Journal of chemical physics.
[40] Lloyd N. Trefethen,et al. Cubature, Approximation, and Isotropy in the Hypercube , 2017, SIAM Rev..
[41] Zhi-Quan Luo,et al. A Unified Algorithmic Framework for Block-Structured Optimization Involving Big Data: With applications in machine learning and signal processing , 2015, IEEE Signal Processing Magazine.
[42] Andrzej Cichocki,et al. Low Complexity Damped Gauss-Newton Algorithms for CANDECOMP/PARAFAC , 2012, SIAM J. Matrix Anal. Appl..
[43] Gérard Favier,et al. Overview of tensor decompositions with applications to communications , 2016 .
[44] Boris N. Khoromskij,et al. Simultaneous state-time approximation of the chemical master equation using tensor product formats , 2015, Numer. Linear Algebra Appl..
[45] David F. Gleich,et al. Multilinear PageRank , 2014, SIAM J. Matrix Anal. Appl..
[46] Pierre Comon,et al. Tensors : A brief introduction , 2014, IEEE Signal Processing Magazine.
[47] Michael I. Jordan,et al. A Probabilistic Interpretation of Canonical Correlation Analysis , 2005 .
[48] T. Schulte-Herbrüggen,et al. Computations in quantum tensor networks , 2012, 1212.5005.
[49] M. Reiher,et al. Quantum-information analysis of electronic states of different molecular structures , 2010, 1008.4607.
[50] Anima Anandkumar,et al. Tensor decompositions for learning latent variable models , 2012, J. Mach. Learn. Res..
[51] Lieven De Lathauwer,et al. Optimization-Based Algorithms for Tensor Decompositions: Canonical Polyadic Decomposition, Decomposition in Rank-(Lr, Lr, 1) Terms, and a New Generalization , 2013, SIAM J. Optim..
[52] Reinhold Schneider,et al. Tensor Networks and Hierarchical Tensors for the Solution of High-Dimensional Partial Differential Equations , 2016, Foundations of Computational Mathematics.
[53] Andrzej Cichocki,et al. Fundamental tensor operations for large-scale data analysis using tensor network formats , 2017, Multidimensional Systems and Signal Processing.
[54] Zenglin Xu,et al. DinTucker: Scaling Up Gaussian Process Models on Large Multidimensional Arrays , 2016, AAAI.
[55] Naotaka Fujii,et al. Higher Order Partial Least Squares (HOPLS): A Generalized Multilinear Regression Method , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[56] Andrzej Cichocki,et al. Extended HALS algorithm for nonnegative Tucker decomposition and its applications for multiway analysis and classification , 2011, Neurocomputing.
[57] Daniele Venturi,et al. Numerical methods for high-dimensional probability density function equations , 2016, J. Comput. Phys..
[58] S. Goreinov,et al. Pseudo-skeleton approximations by matrices of maximal volume , 1997 .
[59] Sheng Luo,et al. Population Value Decomposition, a Framework for the Analysis of Image Populations , 2011, Journal of the American Statistical Association.
[60] Daniel Kressner,et al. Low-Rank Tensor Methods with Subspace Correction for Symmetric Eigenvalue Problems , 2014, SIAM J. Sci. Comput..
[61] Emmanuel J. Candès,et al. The Power of Convex Relaxation: Near-Optimal Matrix Completion , 2009, IEEE Transactions on Information Theory.
[62] Andrzej Cichocki,et al. Tensor Networks for Big Data Analytics and Large-Scale Optimization Problems , 2014, ArXiv.
[63] Lars Grasedyck,et al. A Review on Adaptive Low-Rank Approximation Techniques in the Hierarchical Tensor Format , 2014 .
[64] U. Schollwöck. Matrix Product State Algorithms: DMRG, TEBD and Relatives , 2013 .
[65] Boris N. Khoromskij,et al. Two-Level QTT-Tucker Format for Optimized Tensor Calculus , 2013, SIAM J. Matrix Anal. Appl..
[66] Pierre-Antoine Absil,et al. Low-rank retractions: a survey and new results , 2015, Comput. Optim. Appl..
[67] Lars Grasedyck,et al. Tree Adaptive Approximation in the Hierarchical Tensor Format , 2014, SIAM J. Sci. Comput..
[68] L. Lathauwer,et al. Canonical Polyadic Decomposition with Orthogonality Constraints , 2012 .
[69] M. Steinlechner. Riemannian Optimization for Solving High-Dimensional Problems with Low-Rank Tensor Structure , 2016 .
[70] Vishal Monga,et al. Robust Video Hashing via Multilinear Subspace Projections , 2012, IEEE Transactions on Image Processing.
[71] N. Ahuja,et al. Out-of-core tensor approximation of multi-dimensional matrices of visual data , 2005, SIGGRAPH 2005.
[72] Daniel M. Dunlavy,et al. A scalable optimization approach for fitting canonical tensor decompositions , 2011 .
[73] Richard Bellman,et al. Adaptive Control Processes - A Guided Tour (Reprint from 1961) , 2015, Princeton Legacy Library.
[74] Andrzej Cichocki,et al. Tensor Networks for Latent Variable Analysis. Part I: Algorithms for Tensor Train Decomposition , 2016, ArXiv.
[75] Nathan Halko,et al. Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..
[76] E. Tyrtyshnikov,et al. TT-cross approximation for multidimensional arrays , 2010 .
[77] Volker Tresp,et al. Learning with Memory Embeddings , 2015, ArXiv.
[78] Michael I. Jordan,et al. Dimensionality Reduction for Supervised Learning with Reproducing Kernel Hilbert Spaces , 2004, J. Mach. Learn. Res..
[79] Ivan V. Oseledets,et al. A low-rank approach to the computation of path integrals , 2015, J. Comput. Phys..
[80] N.D. Sidiropoulos,et al. Low-rank decomposition of multi-way arrays: a signal processing perspective , 2004, Processing Workshop Proceedings, 2004 Sensor Array and Multichannel Signal.
[81] Nikos D. Sidiropoulos,et al. Parallel Algorithms for Constrained Tensor Factorization via Alternating Direction Method of Multipliers , 2014, IEEE Transactions on Signal Processing.
[82] G. Evenbly,et al. Algorithms for entanglement renormalization , 2007, 0707.1454.
[83] Rasmus Bro,et al. The N-way Toolbox for MATLAB , 2000 .
[84] Matthias Bolten,et al. Multigrid Methods for Tensor Structured Markov Chains with Low Rank Approximation , 2014, SIAM J. Sci. Comput..
[85] VLADIMIR A. KAZEEV,et al. Low-Rank Explicit QTT Representation of the Laplace Operator and Its Inverse , 2012, SIAM J. Matrix Anal. Appl..
[86] Michael W. Mahoney,et al. A randomized algorithm for a tensor-based generalization of the singular value decomposition , 2007 .
[87] Bülent Yener,et al. Unsupervised Multiway Data Analysis: A Literature Survey , 2009, IEEE Transactions on Knowledge and Data Engineering.
[88] Tamara G. Kolda,et al. Tensor Decompositions and Applications , 2009, SIAM Rev..
[89] Christine Tobler,et al. Low-rank tensor methods for linear systems and eigenvalue problems , 2012 .
[90] Xiu Yang,et al. Enabling High-Dimensional Hierarchical Uncertainty Quantification by ANOVA and Tensor-Train Decomposition , 2014, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.
[91] Andrzej Cichocki,et al. Nonnegative Matrix and Tensor Factorization T , 2007 .
[92] Stefan Klus,et al. Towards tensor-based methods for the numerical approximation of the Perron-Frobenius and Koopman operator , 2015, 1512.06527.
[93] B. Khoromskij. Tensors-structured Numerical Methods in Scientific Computing: Survey on Recent Advances , 2012 .
[94] Christoph Schwab,et al. Low-rank tensor structure of linear diffusion operators in the TT and QTT formats☆ , 2013 .
[95] Christos Faloutsos,et al. GigaTensor: scaling tensor analysis up by 100 times - algorithms and discoveries , 2012, KDD.
[96] Hadi Fanaee-T,et al. Tensor-based anomaly detection: An interdisciplinary survey , 2016, Knowl. Based Syst..
[97] Petros Drineas,et al. CUR matrix decompositions for improved data analysis , 2009, Proceedings of the National Academy of Sciences.
[98] Michel Verhaegen,et al. Learning multidimensional Fourier series with tensor trains , 2014, 2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP).
[99] Andrzej Cichocki,et al. Computing Sparse Representations of Multidimensional Signals Using Kronecker Bases , 2013, Neural Computation.
[100] J. Kruskal. Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics , 1977 .
[101] VARUN CHANDOLA,et al. Anomaly detection: A survey , 2009, CSUR.
[102] Arie Yeredor,et al. Joint Matrices Decompositions and Blind Source Separation: A survey of methods, identification, and applications , 2014, IEEE Signal Processing Magazine.
[103] Nikos D. Sidiropoulos,et al. Parallel factor analysis in sensor array processing , 2000, IEEE Trans. Signal Process..
[104] Andrzej Cichocki,et al. From basis components to complex structural patterns , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.
[105] W. Hackbusch. Tensor Spaces and Numerical Tensor Calculus , 2012, Springer Series in Computational Mathematics.
[106] Nikos D. Sidiropoulos,et al. Generalizing Carathéodory's uniqueness of harmonic parameterization to N dimensions , 2001, IEEE Trans. Inf. Theory.
[107] Edoardo Di Napoli,et al. Towards an efficient use of the BLAS library for multilinear tensor contractions , 2013, Appl. Math. Comput..
[108] Visa Koivunen,et al. Sequential Unfolding SVD for Tensors With Applications in Array Signal Processing , 2009, IEEE Transactions on Signal Processing.
[109] N. Sidiropoulos,et al. On the uniqueness of multilinear decomposition of N‐way arrays , 2000 .
[110] Michael Ulbrich,et al. Constrained Optimization with Low-Rank Tensors and Applications to Parametric Problems with PDEs , 2017, SIAM J. Sci. Comput..
[111] Michael I. Jordan,et al. Kernel independent component analysis , 2003 .
[112] Ivan Oseledets,et al. Tensor-Train Decomposition , 2011, SIAM J. Sci. Comput..
[113] Michalis K. Titsias,et al. Variational Learning of Inducing Variables in Sparse Gaussian Processes , 2009, AISTATS.
[114] Stephen P. Boyd,et al. Enhancing Sparsity by Reweighted ℓ1 Minimization , 2007, 0711.1612.
[115] Mark W. Woolrich,et al. Linked independent component analysis for multimodal data fusion , 2011, NeuroImage.
[116] Raf Vandebril,et al. A New Truncation Strategy for the Higher-Order Singular Value Decomposition , 2012, SIAM J. Sci. Comput..
[117] Richard A. Harshman,et al. Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .
[118] Peter Richtárik,et al. Parallel coordinate descent methods for big data optimization , 2012, Mathematical Programming.
[119] Zenglin Xu,et al. Infinite Tucker Decomposition: Nonparametric Bayesian Models for Multiway Data Analysis , 2011, ICML.
[120] Pierre-Antoine Absil,et al. RTRMC: A Riemannian trust-region method for low-rank matrix completion , 2011, NIPS.
[121] Pierre Comon,et al. Handbook of Blind Source Separation: Independent Component Analysis and Applications , 2010 .
[122] Yongxin Yang,et al. Deep Multi-task Representation Learning: A Tensor Factorisation Approach , 2016, ICLR.
[123] G. Ehlers,et al. Entanglement structure of the Hubbard model in momentum space , 2015, 1508.07477.
[124] Ivan V. Oseledets,et al. Fast Multidimensional Convolution in Low-Rank Tensor Formats via Cross Approximation , 2015, SIAM J. Sci. Comput..
[125] Andrzej Cichocki,et al. Era of Big Data Processing: A New Approach via Tensor Networks and Tensor Decompositions , 2014, ArXiv.
[126] Alexander J. Smola,et al. Fast and Guaranteed Tensor Decomposition via Sketching , 2015, NIPS.
[127] U. Schollwoeck. The density-matrix renormalization group in the age of matrix product states , 2010, 1008.3477.
[128] B. Khoromskij. O(dlog N)-Quantics Approximation of N-d Tensors in High-Dimensional Numerical Modeling , 2011 .
[129] Michael Elad,et al. From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images , 2009, SIAM Rev..
[130] Denis Zorin,et al. A Tensor-Train accelerated solver for integral equations in complex geometries , 2015, J. Comput. Phys..
[131] Yurii Nesterov,et al. Subgradient methods for huge-scale optimization problems , 2013, Mathematical Programming.
[132] Boris N. Khoromskij,et al. Efficient Computation of Highly Oscillatory Integrals by Using QTT Tensor Approximation , 2014, Comput. Methods Appl. Math..
[133] G. Vidal. Efficient classical simulation of slightly entangled quantum computations. , 2003, Physical review letters.
[134] Andrzej Cichocki,et al. Linked Component Analysis From Matrices to High-Order Tensors: Applications to Biomedical Data , 2015, Proceedings of the IEEE.
[135] H. Vincent Poor,et al. Robust iteratively reweighted Lasso for sparse tensor factorizations , 2014, 2014 IEEE Workshop on Statistical Signal Processing (SSP).
[136] Steven R. White,et al. Minimally entangled typical thermal state algorithms , 2010, 1002.1305.
[137] Lieven De Lathauwer,et al. Decompositions of a Higher-Order Tensor in Block Terms - Part III: Alternating Least Squares Algorithms , 2008, SIAM J. Matrix Anal. Appl..
[138] Jennifer Seberry,et al. The Strong Kronecker Product , 1994, J. Comb. Theory, Ser. A.
[139] Kennedy,et al. Rigorous results on valence-bond ground states in antiferromagnets. , 1987, Physical review letters.
[140] G. Evenbly,et al. Entanglement Renormalization and Wavelets. , 2016, Physical review letters.
[141] Jure Leskovec,et al. Tensor Spectral Clustering for Partitioning Higher-order Network Structures , 2015, SDM.
[142] Radek Erban,et al. Tensor methods for parameter estimation and bifurcation analysis of stochastic reaction networks , 2015, Journal of The Royal Society Interface.
[143] Tamara G. Kolda,et al. Parallel Tensor Compression for Large-Scale Scientific Data , 2015, 2016 IEEE International Parallel and Distributed Processing Symposium (IPDPS).
[144] Andrzej Cichocki,et al. Fast Alternating LS Algorithms for High Order CANDECOMP/PARAFAC Tensor Factorizations , 2013, IEEE Transactions on Signal Processing.
[145] Andrzej Cichocki,et al. Tensor Decompositions: A New Concept in Brain Data Analysis? , 2013, ArXiv.
[146] Roman Orus,et al. A Practical Introduction to Tensor Networks: Matrix Product States and Projected Entangled Pair States , 2013, 1306.2164.
[147] Andrzej Cichocki,et al. Adaptive Blind Signal and Image Processing - Learning Algorithms and Applications , 2002 .
[148] Nikos D. Sidiropoulos,et al. Robust iterative fitting of multilinear models , 2005, IEEE Transactions on Signal Processing.
[149] Frank Verstraete,et al. Matrix product state representations , 2006, Quantum Inf. Comput..
[150] Bart Vandereycken,et al. The geometry of algorithms using hierarchical tensors , 2013, Linear Algebra and its Applications.
[151] Andrew Critch,et al. Algebraic Geometry of Matrix Product States , 2012, 1210.2812.
[152] Andrzej Cichocki,et al. Regularized Computation of Approximate Pseudoinverse of Large Matrices Using Low-Rank Tensor Train Decompositions , 2015, SIAM J. Matrix Anal. Appl..
[153] Gene H. Golub,et al. Symmetric Tensors and Symmetric Tensor Rank , 2008, SIAM J. Matrix Anal. Appl..
[154] S. Dolgov. Tensor product methods in numerical simulation of high-dimensional dynamical problems , 2014 .
[155] Fan Yang,et al. Tensor and its tucker core: The invariance relationships , 2016, Numer. Linear Algebra Appl..
[156] Andrzej Cichocki,et al. Tensor Deflation for CANDECOMP/PARAFAC— Part I: Alternating Subspace Update Algorithm , 2015, IEEE Transactions on Signal Processing.
[157] Tamara G. Kolda,et al. MATLAB Tensor Toolbox , 2006 .
[158] David F. Gleich,et al. Tall and skinny QR factorizations in MapReduce architectures , 2011, MapReduce '11.
[159] S Montangero,et al. Quantum multiscale entanglement renormalization ansatz channels. , 2008, Physical review letters.
[160] Lieven De Lathauwer,et al. A Link between the Canonical Decomposition in Multilinear Algebra and Simultaneous Matrix Diagonalization , 2006, SIAM J. Matrix Anal. Appl..
[161] Volkan Cevher,et al. Technical Report No . 201 701 January 201 7 RANDOMIZED SINGLE-VIEW ALGORITHMS FOR LOW-RANK MATRIX APPROXIMATION , 2016 .
[162] N. Alexander,et al. Putting MRFs on a Tensor Train , 2014 .
[163] Haobin Wang,et al. Multilayer formulation of the multiconfiguration time-dependent Hartree theory , 2003 .
[164] Andrzej Cichocki,et al. Low rank tensor deconvolution , 2015, 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
[165] W. Hackbusch,et al. A New Scheme for the Tensor Representation , 2009 .
[166] Volkan Cevher,et al. Convex Optimization for Big Data: Scalable, randomized, and parallel algorithms for big data analytics , 2014, IEEE Signal Processing Magazine.
[167] Toshio Odanaka,et al. ADAPTIVE CONTROL PROCESSES , 1990 .
[168] Daniel Kressner,et al. Algorithm 941 , 2014 .
[169] Lars Karlsson,et al. Parallel algorithms for tensor completion in the CP format , 2016, Parallel Comput..
[170] Andrzej Cichocki,et al. Tensor Decompositions for Signal Processing Applications: From two-way to multiway component analysis , 2014, IEEE Signal Processing Magazine.
[171] Mario Bebendorf,et al. Wideband nested cross approximation for Helmholtz problems , 2015, Numerische Mathematik.
[172] Lieven De Lathauwer,et al. Blind Separation of Exponential Polynomials and the Decomposition of a Tensor in Rank-(Lr, Lr, 1) Terms , 2011, SIAM J. Matrix Anal. Appl..
[173] Andrzej Cichocki,et al. Robust Multilinear Tensor Rank Estimation Using Higher Order Singular Value Decomposition and Information Criteria , 2017, IEEE Transactions on Signal Processing.
[174] R. Bellman,et al. V. Adaptive Control Processes , 1964 .
[175] Joos Vandewalle,et al. On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..
[176] Emmanuel Vincent,et al. Proceedings of the 10th international conference on Latent Variable Analysis and Signal Separation , 2010 .
[177] Jeff M. Phillips,et al. Improved Practical Matrix Sketching with Guarantees , 2016, IEEE Trans. Knowl. Data Eng..
[178] Nico Vervliet,et al. Breaking the Curse of Dimensionality Using Decompositions of Incomplete Tensors: Tensor-based scientific computing in big data analysis , 2014, IEEE Signal Processing Magazine.
[179] Junzhou Huang,et al. Preconditioning for Accelerated Iteratively Reweighted Least Squares in Structured Sparsity Reconstruction , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.
[180] Evgeniy Gabrilovich,et al. A Review of Relational Machine Learning for Knowledge Graphs , 2015, Proceedings of the IEEE.
[181] M. Irani. Vision Day Schedule Time Speaker and Collaborators Affiliation Title a General Preprocessing Method for Improved Performance of Epipolar Geometry Estimation Algorithms on the Expressive Power of Deep Learning: a Tensor Analysis , 2016 .
[182] Daniel Kressner,et al. Multigrid methods combined with low-rank approximation for tensor structured Markov chains , 2016 .
[183] S. Goreinov,et al. A Theory of Pseudoskeleton Approximations , 1997 .
[184] Aapo Hyvärinen,et al. Group-PCA for very large fMRI datasets , 2014, NeuroImage.
[185] Chris H. Q. Ding,et al. Simultaneous tensor subspace selection and clustering: the equivalence of high order svd and k-means clustering , 2008, KDD.
[186] A. Uschmajew,et al. On low-rank approximability of solutions to high-dimensional operator equations and eigenvalue problems , 2014, 1406.7026.
[187] Vladimir A. Kazeev,et al. Direct Solution of the Chemical Master Equation Using Quantized Tensor Trains , 2014, PLoS Comput. Biol..
[188] J. Chang,et al. Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .
[189] Renato Pajarola,et al. TAMRESH – Tensor Approximation Multiresolution Hierarchy for Interactive Volume Visualization , 2013, Comput. Graph. Forum.
[190] Andrzej Cichocki,et al. Smooth PARAFAC Decomposition for Tensor Completion , 2015, IEEE Transactions on Signal Processing.
[191] Reinhold Schneider,et al. The Alternating Linear Scheme for Tensor Optimization in the Tensor Train Format , 2012, SIAM J. Sci. Comput..
[192] B. Khoromskij,et al. Bethe-Salpeter excitation energies using low-rank tensor factorizations , 2015, 1505.02696.
[193] W. Dur,et al. Concatenated tensor network states , 2009, 0904.1925.
[194] Daniel Kressner,et al. A literature survey of low‐rank tensor approximation techniques , 2013, 1302.7121.
[195] P. Tichavsky,et al. Fast Approximate Joint Diagonalization Incorporating Weight Matrices , 2009, IEEE Transactions on Signal Processing.
[196] Amnon Shashua,et al. Convolutional Rectifier Networks as Generalized Tensor Decompositions , 2016, ICML.
[197] Lieven De Lathauwer,et al. Decompositions of a Higher-Order Tensor in Block Terms - Part II: Definitions and Uniqueness , 2008, SIAM J. Matrix Anal. Appl..
[198] David E. Booth,et al. Multi-Way Analysis: Applications in the Chemical Sciences , 2005, Technometrics.
[199] Z. Y. Xie,et al. Renormalization of tensor-network states , 2010, 1002.1405.
[200] Sergio Cruces,et al. Log-Determinant Divergences Revisited: Alpha-Beta and Gamma Log-Det Divergences , 2014, Entropy.
[201] Nikos D. Sidiropoulos,et al. From K-Means to Higher-Way Co-Clustering: Multilinear Decomposition With Sparse Latent Factors , 2013, IEEE Transactions on Signal Processing.
[202] Geoffrey E. Hinton,et al. Tensor Analyzers , 2013, ICML.
[203] D. Pérez-García,et al. PEPS as ground states: Degeneracy and topology , 2010, 1001.3807.
[204] Ngai Wong,et al. A constructive arbitrary‐degree Kronecker product decomposition of tensors , 2015, Numer. Linear Algebra Appl..
[205] Nikos D. Sidiropoulos,et al. Tensor Decomposition for Signal Processing and Machine Learning , 2016, IEEE Transactions on Signal Processing.
[206] Morten Mørup,et al. Applications of tensor (multiway array) factorizations and decompositions in data mining , 2011, WIREs Data Mining Knowl. Discov..
[207] Oded Schwartz,et al. Hypergraph Partitioning for Parallel Sparse Matrix-Matrix Multiplication , 2015, SPAA.
[208] Dong Wang,et al. Efficient dimension reduction for high-dimensional matrix-valued data , 2016, Neurocomputing.
[209] Bart Vandereycken,et al. Low-rank tensor completion by Riemannian optimization , 2014 .
[210] Trac D. Tran,et al. Tensor sparsification via a bound on the spectral norm of random tensors , 2010, ArXiv.
[211] Vin de Silva,et al. Tensor rank and the ill-posedness of the best low-rank approximation problem , 2006, math/0607647.
[212] J. Ignacio Cirac,et al. Unifying projected entangled pair state contractions , 2013, 1311.6696.
[213] Edo Liberty,et al. Efficient Frequent Directions Algorithm for Sparse Matrices , 2016, KDD.
[214] Zoubin Ghahramani,et al. Unifying linear dimensionality reduction , 2014, 1406.0873.
[215] Ivan V. Oseledets,et al. Approximation of 2d˟2d Matrices Using Tensor Decomposition , 2010, SIAM J. Matrix Anal. Appl..
[216] Robert E. Mahony,et al. Optimization Algorithms on Matrix Manifolds , 2007 .
[217] Michael W. Mahoney. Randomized Algorithms for Matrices and Data , 2011, Found. Trends Mach. Learn..
[218] Pierre Comon,et al. Multiarray Signal Processing: Tensor decomposition meets compressed sensing , 2010, ArXiv.
[219] Wei Chu,et al. Probabilistic Models for Incomplete Multi-dimensional Arrays , 2009, AISTATS.
[220] Tamara G. Kolda,et al. MATLAB tensor classes for fast algorithm prototyping. , 2004 .
[221] Demetri Terzopoulos,et al. Multilinear Analysis of Image Ensembles: TensorFaces , 2002, ECCV.
[222] Stefan Handschuh,et al. Numerical methods in Tensor Networks , 2014 .
[223] R. Tibshirani,et al. Sparse inverse covariance estimation with the graphical lasso. , 2008, Biostatistics.
[224] Genevera I. Allen,et al. Sparse non-negative generalized PCA with applications to metabolomics , 2011, Bioinform..
[225] L. Tucker,et al. Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.
[226] Stephen P. Boyd,et al. Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..
[227] Andrzej Cichocki,et al. Fast and unique Tucker decompositions via multiway blind source separation , 2012 .
[228] Andrzej Cichocki,et al. On Revealing Replicating Structures in Multiway Data: A Novel Tensor Decomposition Approach , 2012, LVA/ICA.
[229] Andrew Critch. Algebraic Geometry of Hidden Markov and Related Models , 2013 .
[230] Michael Steinlechner,et al. Riemannian Optimization for High-Dimensional Tensor Completion , 2016, SIAM J. Sci. Comput..
[231] Ngai Wong,et al. A Constructive Algorithm for Decomposing a Tensor into a Finite Sum of Orthonormal Rank-1 Terms , 2014, SIAM J. Matrix Anal. Appl..
[232] Joos Vandewalle,et al. A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..
[233] A. Yu. Mikhalev,et al. Iterative representing set selection for nested cross approximation , 2013, Numer. Linear Algebra Appl..
[234] David F. Gleich,et al. Scalable Methods for Nonnegative Matrix Factorizations of Near-separable Tall-and-skinny Matrices , 2014, NIPS.
[235] R. Pfeifer,et al. NCON: A tensor network contractor for MATLAB , 2014, 1402.0939.
[236] Ivan V. Oseledets,et al. Solution of Linear Systems and Matrix Inversion in the TT-Format , 2012, SIAM J. Sci. Comput..
[237] Dario Andrea Bini. Tensor and border rank of certain classes of matrices and the fast evaluation of determinant inverse matrix and eigenvalues , 1985 .
[238] Michael Griebel,et al. Data Mining with Sparse Grids , 2001, Computing.
[239] I. McCulloch,et al. Strictly single-site DMRG algorithm with subspace expansion , 2015, 1501.05504.
[240] S. Dolgov. TT-GMRES: solution to a linear system in the structured tensor format , 2012, 1206.5512.
[241] Lars Grasedyck,et al. Hierarchical Singular Value Decomposition of Tensors , 2010, SIAM J. Matrix Anal. Appl..
[242] P. Kroonenberg. Applied Multiway Data Analysis , 2008 .
[243] Percy Liang,et al. Tensor Factorization via Matrix Factorization , 2015, AISTATS.
[244] Andrzej Cichocki,et al. Canonical Polyadic Decomposition Based on a Single Mode Blind Source Separation , 2012, IEEE Signal Processing Letters.
[245] Zhihua Zhang,et al. Improving CUR matrix decomposition and the Nyström approximation via adaptive sampling , 2013, J. Mach. Learn. Res..
[246] White,et al. Density-matrix algorithms for quantum renormalization groups. , 1993, Physical review. B, Condensed matter.
[247] Oded Schwartz,et al. Improving the Numerical Stability of Fast Matrix Multiplication , 2015, SIAM J. Matrix Anal. Appl..
[248] Weichung Wang,et al. Integrating multiple random sketches for singular value decomposition , 2016, 1608.08285.
[249] Andrzej Cichocki,et al. Very Large-Scale Singular Value Decomposition Using Tensor Train Networks , 2014, ArXiv.
[250] Vladimir A. Kazeev,et al. Multilevel Toeplitz Matrices Generated by Tensor-Structured Vectors and Convolution with Logarithmic Complexity , 2013, SIAM J. Sci. Comput..
[251] Alejandro C Olivieri,et al. Analytical advantages of multivariate data processing. One, two, three, infinity? , 2008, Analytical chemistry.
[252] Reinhold Schneider,et al. Dynamical Approximation by Hierarchical Tucker and Tensor-Train Tensors , 2013, SIAM J. Matrix Anal. Appl..
[253] Stephen P. Boyd,et al. Proximal Algorithms , 2013, Found. Trends Optim..
[254] Charles F. Loan,et al. Structured tensor computations: blocking, symmetries and kronecker factorizations , 2012 .
[255] Jimeng Sun,et al. An input-adaptive and in-place approach to dense tensor-times-matrix multiply , 2015, SC15: International Conference for High Performance Computing, Networking, Storage and Analysis.
[256] Xuelong Li,et al. General Tensor Discriminant Analysis and Gabor Features for Gait Recognition , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[257] Aapo Hyvärinen,et al. Independent component analysis of fMRI group studies by self-organizing clustering , 2005, NeuroImage.
[258] Nikos D. Sidiropoulos,et al. Tensors for Data Mining and Data Fusion , 2016, ACM Trans. Intell. Syst. Technol..
[259] Martin Stoll,et al. Fast tensor product solvers for optimization problems with fractional differential equations as constraints , 2016, Appl. Math. Comput..
[260] Jimeng Sun,et al. Beyond streams and graphs: dynamic tensor analysis , 2006, KDD '06.
[261] Liqing Zhang,et al. Kernelization of Tensor-Based Models for Multiway Data Analysis: Processing of Multidimensional Structured Data , 2013, IEEE Signal Processing Magazine.
[262] Aapo Hyvärinen,et al. Independent component analysis: recent advances , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[263] Uwe Helmke,et al. Riemannian Optimization on Tensor Products of Grassmann Manifolds: Applications to Generalized Rayleigh-Quotients , 2010, SIAM J. Matrix Anal. Appl..
[264] Haiping Lu,et al. A survey of multilinear subspace learning for tensor data , 2011, Pattern Recognit..