Tensor Networks for Dimensionality Reduction and Large-scale Optimization: Part 1 Low-Rank Tensor Decompositions

Modern applications in engineering and data science are increasinglybased on multidimensional data of exceedingly high volume, variety,and structural richness. However, standard machine learning algorithmstypically scale exponentially with data volume and complexityof cross-modal couplings - the so called curse of dimensionality -which is prohibitive to the analysis of large-scale, multi-modal andmulti-relational datasets. Given that such data are often efficientlyrepresented as multiway arrays or tensors, it is therefore timely andvaluable for the multidisciplinary machine learning and data analyticcommunities to review low-rank tensor decompositions and tensor networksas emerging tools for dimensionality reduction and large scaleoptimization problems. Our particular emphasis is on elucidating that,by virtue of the underlying low-rank approximations, tensor networkshave the ability to alleviate the curse of dimensionality in a numberof applied areas. In Part 1 of this monograph we provide innovativesolutions to low-rank tensor network decompositions and easy to interpretgraphical representations of the mathematical operations ontensor networks. Such a conceptual insight allows for seamless migrationof ideas from the flat-view matrices to tensor network operationsand vice versa, and provides a platform for further developments, practicalapplications, and non-Euclidean extensions. It also permits theintroduction of various tensor network operations without an explicitnotion of mathematical expressions, which may be beneficial for manyresearch communities that do not directly rely on multilinear algebra.Our focus is on the Tucker and tensor train TT decompositions andtheir extensions, and on demonstrating the ability of tensor networksto provide linearly or even super-linearly e.g., logarithmically scalablesolutions, as illustrated in detail in Part 2 of this monograph.

[1]  F. Verstraete,et al.  Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems , 2008, 0907.2796.

[2]  Andrzej Cichocki,et al.  Group Component Analysis for Multiblock Data: Common and Individual Feature Extraction , 2012, IEEE Transactions on Neural Networks and Learning Systems.

[3]  S. V. Dolgov,et al.  ALTERNATING MINIMAL ENERGY METHODS FOR LINEAR SYSTEMS IN HIGHER DIMENSIONS∗ , 2014 .

[4]  Yurii Nesterov,et al.  Efficiency of Coordinate Descent Methods on Huge-Scale Optimization Problems , 2012, SIAM J. Optim..

[5]  H. Matsueda Analytic Optimization of a MERA network and its Relevance to Quantum Integrability and Wavelet , 2016, 1608.02205.

[6]  Michael K. Ng,et al.  Sparse Canonical Correlation Analysis: New Formulation and Algorithm , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Klaus-Robert Müller,et al.  Three-Way Analysis of Spectrospatial Electromyography Data: Classification and Interpretation , 2015, PloS one.

[8]  Michael W. Mahoney,et al.  Spectral Gap Error Bounds for Improving CUR Matrix Decomposition and the Nyström Method , 2015, AISTATS.

[9]  Lieven De Lathauwer,et al.  Exact line and plane search for tensor optimization , 2013, Computational optimization and applications.

[10]  Andrzej Cichocki,et al.  Fast Nonnegative Matrix/Tensor Factorization Based on Low-Rank Approximation , 2012, IEEE Transactions on Signal Processing.

[11]  Hans-Joachim Bungartz,et al.  Acta Numerica 2004: Sparse grids , 2004 .

[12]  Christos Faloutsos,et al.  Mining billion-scale tensors: algorithms and discoveries , 2016, The VLDB Journal.

[13]  Y. Kao,et al.  Uni10: an open-source library for tensor network algorithms , 2015 .

[14]  L. Mirsky SYMMETRIC GAUGE FUNCTIONS AND UNITARILY INVARIANT NORMS , 1960 .

[15]  Xiao-Gang Wen,et al.  Tensor-product representations for string-net condensed states , 2008, 0809.2821.

[16]  Andrzej Cichocki,et al.  Efficient Nonnegative Tucker Decompositions: Algorithms and Uniqueness , 2014, IEEE Transactions on Image Processing.

[17]  De LathauwerLieven Blind Separation of Exponential Polynomials and the Decomposition of a Tensor in Rank-$(L_r,L_r,1)$ Terms , 2011 .

[18]  Rasmus Pagh,et al.  Fast and scalable polynomial kernels via explicit feature maps , 2013, KDD.

[19]  Petros Drineas,et al.  Tensor-CUR Decompositions for Tensor-Based Data , 2008, SIAM J. Matrix Anal. Appl..

[20]  André Lima Férrer de Almeida,et al.  Overview of constrained PARAFAC models , 2014, EURASIP Journal on Advances in Signal Processing.

[21]  Lieven De Lathauwer,et al.  Blind Signal Separation via Tensor Decomposition With Vandermonde Factor: Canonical Polyadic Decomposition , 2013, IEEE Transactions on Signal Processing.

[22]  David F. Gleich,et al.  Model Reduction With MapReduce-enabled Tall and Skinny Singular Value Decomposition , 2013, SIAM J. Sci. Comput..

[23]  Liqing Zhang,et al.  Tensor Ring Decomposition , 2016, ArXiv.

[24]  Pierre-Antoine Absil,et al.  Robust Low-Rank Matrix Completion by Riemannian Optimization , 2016, SIAM J. Sci. Comput..

[25]  Florian Roemer,et al.  Higher-Order SVD-Based Subspace Estimation to Improve the Parameter Estimation Accuracy in Multidimensional Harmonic Retrieval Problems , 2008, IEEE Transactions on Signal Processing.

[26]  Andrzej Cichocki,et al.  Fast Local Algorithms for Large Scale Nonnegative Matrix and Tensor Factorizations , 2009, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[27]  Pierre Comon,et al.  Independent component analysis, A new concept? , 1994, Signal Process..

[28]  J. H. Choi,et al.  DFacTo: Distributed Factorization of Tensors , 2014, NIPS.

[29]  A. Cichocki,et al.  Generalizing the column–row matrix decomposition to multi-way arrays , 2010 .

[30]  Eugene E. Tyrtyshnikov,et al.  Breaking the Curse of Dimensionality, Or How to Use SVD in Many Dimensions , 2009, SIAM J. Sci. Comput..

[31]  Boris N. Khoromskij,et al.  Computation of extreme eigenvalues in higher dimensions using block tensor train format , 2013, Comput. Phys. Commun..

[32]  R. Schneider,et al.  Tree Tensor Network State with Variable Tensor Order: An Efficient Multireference Method for Strongly Correlated Systems , 2015, Journal of chemical theory and computation.

[33]  Lieven De Lathauwer,et al.  Decompositions of a Higher-Order Tensor in Block Terms - Part I: Lemmas for Partitioned Matrices , 2008, SIAM J. Matrix Anal. Appl..

[34]  Andrzej Cichocki,et al.  Stable, Robust, and Super Fast Reconstruction of Tensors Using Multi-Way Projections , 2014, IEEE Transactions on Signal Processing.

[35]  F. L. Hitchcock Multiple Invariants and Generalized Rank of a P‐Way Matrix or Tensor , 1928 .

[36]  Michael W. Mahoney,et al.  Future Directions in Tensor-Based Computation and Modeling , 2009 .

[37]  Mario Bebendorf,et al.  Adaptive Cross Approximation of Multivariate Functions , 2011 .

[38]  A. Cichocki,et al.  Tensor decompositions for feature extraction and classification of high dimensional datasets , 2010 .

[39]  Garnet Kin-Lic Chan,et al.  Efficient tree tensor network states (TTNS) for quantum chemistry: generalizations of the density matrix renormalization group algorithm. , 2013, The Journal of chemical physics.

[40]  Lloyd N. Trefethen,et al.  Cubature, Approximation, and Isotropy in the Hypercube , 2017, SIAM Rev..

[41]  Zhi-Quan Luo,et al.  A Unified Algorithmic Framework for Block-Structured Optimization Involving Big Data: With applications in machine learning and signal processing , 2015, IEEE Signal Processing Magazine.

[42]  Andrzej Cichocki,et al.  Low Complexity Damped Gauss-Newton Algorithms for CANDECOMP/PARAFAC , 2012, SIAM J. Matrix Anal. Appl..

[43]  Gérard Favier,et al.  Overview of tensor decompositions with applications to communications , 2016 .

[44]  Boris N. Khoromskij,et al.  Simultaneous state-time approximation of the chemical master equation using tensor product formats , 2015, Numer. Linear Algebra Appl..

[45]  David F. Gleich,et al.  Multilinear PageRank , 2014, SIAM J. Matrix Anal. Appl..

[46]  Pierre Comon,et al.  Tensors : A brief introduction , 2014, IEEE Signal Processing Magazine.

[47]  Michael I. Jordan,et al.  A Probabilistic Interpretation of Canonical Correlation Analysis , 2005 .

[48]  T. Schulte-Herbrüggen,et al.  Computations in quantum tensor networks , 2012, 1212.5005.

[49]  M. Reiher,et al.  Quantum-information analysis of electronic states of different molecular structures , 2010, 1008.4607.

[50]  Anima Anandkumar,et al.  Tensor decompositions for learning latent variable models , 2012, J. Mach. Learn. Res..

[51]  Lieven De Lathauwer,et al.  Optimization-Based Algorithms for Tensor Decompositions: Canonical Polyadic Decomposition, Decomposition in Rank-(Lr, Lr, 1) Terms, and a New Generalization , 2013, SIAM J. Optim..

[52]  Reinhold Schneider,et al.  Tensor Networks and Hierarchical Tensors for the Solution of High-Dimensional Partial Differential Equations , 2016, Foundations of Computational Mathematics.

[53]  Andrzej Cichocki,et al.  Fundamental tensor operations for large-scale data analysis using tensor network formats , 2017, Multidimensional Systems and Signal Processing.

[54]  Zenglin Xu,et al.  DinTucker: Scaling Up Gaussian Process Models on Large Multidimensional Arrays , 2016, AAAI.

[55]  Naotaka Fujii,et al.  Higher Order Partial Least Squares (HOPLS): A Generalized Multilinear Regression Method , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[56]  Andrzej Cichocki,et al.  Extended HALS algorithm for nonnegative Tucker decomposition and its applications for multiway analysis and classification , 2011, Neurocomputing.

[57]  Daniele Venturi,et al.  Numerical methods for high-dimensional probability density function equations , 2016, J. Comput. Phys..

[58]  S. Goreinov,et al.  Pseudo-skeleton approximations by matrices of maximal volume , 1997 .

[59]  Sheng Luo,et al.  Population Value Decomposition, a Framework for the Analysis of Image Populations , 2011, Journal of the American Statistical Association.

[60]  Daniel Kressner,et al.  Low-Rank Tensor Methods with Subspace Correction for Symmetric Eigenvalue Problems , 2014, SIAM J. Sci. Comput..

[61]  Emmanuel J. Candès,et al.  The Power of Convex Relaxation: Near-Optimal Matrix Completion , 2009, IEEE Transactions on Information Theory.

[62]  Andrzej Cichocki,et al.  Tensor Networks for Big Data Analytics and Large-Scale Optimization Problems , 2014, ArXiv.

[63]  Lars Grasedyck,et al.  A Review on Adaptive Low-Rank Approximation Techniques in the Hierarchical Tensor Format , 2014 .

[64]  U. Schollwöck Matrix Product State Algorithms: DMRG, TEBD and Relatives , 2013 .

[65]  Boris N. Khoromskij,et al.  Two-Level QTT-Tucker Format for Optimized Tensor Calculus , 2013, SIAM J. Matrix Anal. Appl..

[66]  Pierre-Antoine Absil,et al.  Low-rank retractions: a survey and new results , 2015, Comput. Optim. Appl..

[67]  Lars Grasedyck,et al.  Tree Adaptive Approximation in the Hierarchical Tensor Format , 2014, SIAM J. Sci. Comput..

[68]  L. Lathauwer,et al.  Canonical Polyadic Decomposition with Orthogonality Constraints , 2012 .

[69]  M. Steinlechner Riemannian Optimization for Solving High-Dimensional Problems with Low-Rank Tensor Structure , 2016 .

[70]  Vishal Monga,et al.  Robust Video Hashing via Multilinear Subspace Projections , 2012, IEEE Transactions on Image Processing.

[71]  N. Ahuja,et al.  Out-of-core tensor approximation of multi-dimensional matrices of visual data , 2005, SIGGRAPH 2005.

[72]  Daniel M. Dunlavy,et al.  A scalable optimization approach for fitting canonical tensor decompositions , 2011 .

[73]  Richard Bellman,et al.  Adaptive Control Processes - A Guided Tour (Reprint from 1961) , 2015, Princeton Legacy Library.

[74]  Andrzej Cichocki,et al.  Tensor Networks for Latent Variable Analysis. Part I: Algorithms for Tensor Train Decomposition , 2016, ArXiv.

[75]  Nathan Halko,et al.  Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..

[76]  E. Tyrtyshnikov,et al.  TT-cross approximation for multidimensional arrays , 2010 .

[77]  Volker Tresp,et al.  Learning with Memory Embeddings , 2015, ArXiv.

[78]  Michael I. Jordan,et al.  Dimensionality Reduction for Supervised Learning with Reproducing Kernel Hilbert Spaces , 2004, J. Mach. Learn. Res..

[79]  Ivan V. Oseledets,et al.  A low-rank approach to the computation of path integrals , 2015, J. Comput. Phys..

[80]  N.D. Sidiropoulos,et al.  Low-rank decomposition of multi-way arrays: a signal processing perspective , 2004, Processing Workshop Proceedings, 2004 Sensor Array and Multichannel Signal.

[81]  Nikos D. Sidiropoulos,et al.  Parallel Algorithms for Constrained Tensor Factorization via Alternating Direction Method of Multipliers , 2014, IEEE Transactions on Signal Processing.

[82]  G. Evenbly,et al.  Algorithms for entanglement renormalization , 2007, 0707.1454.

[83]  Rasmus Bro,et al.  The N-way Toolbox for MATLAB , 2000 .

[84]  Matthias Bolten,et al.  Multigrid Methods for Tensor Structured Markov Chains with Low Rank Approximation , 2014, SIAM J. Sci. Comput..

[85]  VLADIMIR A. KAZEEV,et al.  Low-Rank Explicit QTT Representation of the Laplace Operator and Its Inverse , 2012, SIAM J. Matrix Anal. Appl..

[86]  Michael W. Mahoney,et al.  A randomized algorithm for a tensor-based generalization of the singular value decomposition , 2007 .

[87]  Bülent Yener,et al.  Unsupervised Multiway Data Analysis: A Literature Survey , 2009, IEEE Transactions on Knowledge and Data Engineering.

[88]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[89]  Christine Tobler,et al.  Low-rank tensor methods for linear systems and eigenvalue problems , 2012 .

[90]  Xiu Yang,et al.  Enabling High-Dimensional Hierarchical Uncertainty Quantification by ANOVA and Tensor-Train Decomposition , 2014, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[91]  Andrzej Cichocki,et al.  Nonnegative Matrix and Tensor Factorization T , 2007 .

[92]  Stefan Klus,et al.  Towards tensor-based methods for the numerical approximation of the Perron-Frobenius and Koopman operator , 2015, 1512.06527.

[93]  B. Khoromskij Tensors-structured Numerical Methods in Scientific Computing: Survey on Recent Advances , 2012 .

[94]  Christoph Schwab,et al.  Low-rank tensor structure of linear diffusion operators in the TT and QTT formats☆ , 2013 .

[95]  Christos Faloutsos,et al.  GigaTensor: scaling tensor analysis up by 100 times - algorithms and discoveries , 2012, KDD.

[96]  Hadi Fanaee-T,et al.  Tensor-based anomaly detection: An interdisciplinary survey , 2016, Knowl. Based Syst..

[97]  Petros Drineas,et al.  CUR matrix decompositions for improved data analysis , 2009, Proceedings of the National Academy of Sciences.

[98]  Michel Verhaegen,et al.  Learning multidimensional Fourier series with tensor trains , 2014, 2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP).

[99]  Andrzej Cichocki,et al.  Computing Sparse Representations of Multidimensional Signals Using Kronecker Bases , 2013, Neural Computation.

[100]  J. Kruskal Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics , 1977 .

[101]  VARUN CHANDOLA,et al.  Anomaly detection: A survey , 2009, CSUR.

[102]  Arie Yeredor,et al.  Joint Matrices Decompositions and Blind Source Separation: A survey of methods, identification, and applications , 2014, IEEE Signal Processing Magazine.

[103]  Nikos D. Sidiropoulos,et al.  Parallel factor analysis in sensor array processing , 2000, IEEE Trans. Signal Process..

[104]  Andrzej Cichocki,et al.  From basis components to complex structural patterns , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[105]  W. Hackbusch Tensor Spaces and Numerical Tensor Calculus , 2012, Springer Series in Computational Mathematics.

[106]  Nikos D. Sidiropoulos,et al.  Generalizing Carathéodory's uniqueness of harmonic parameterization to N dimensions , 2001, IEEE Trans. Inf. Theory.

[107]  Edoardo Di Napoli,et al.  Towards an efficient use of the BLAS library for multilinear tensor contractions , 2013, Appl. Math. Comput..

[108]  Visa Koivunen,et al.  Sequential Unfolding SVD for Tensors With Applications in Array Signal Processing , 2009, IEEE Transactions on Signal Processing.

[109]  N. Sidiropoulos,et al.  On the uniqueness of multilinear decomposition of N‐way arrays , 2000 .

[110]  Michael Ulbrich,et al.  Constrained Optimization with Low-Rank Tensors and Applications to Parametric Problems with PDEs , 2017, SIAM J. Sci. Comput..

[111]  Michael I. Jordan,et al.  Kernel independent component analysis , 2003 .

[112]  Ivan Oseledets,et al.  Tensor-Train Decomposition , 2011, SIAM J. Sci. Comput..

[113]  Michalis K. Titsias,et al.  Variational Learning of Inducing Variables in Sparse Gaussian Processes , 2009, AISTATS.

[114]  Stephen P. Boyd,et al.  Enhancing Sparsity by Reweighted ℓ1 Minimization , 2007, 0711.1612.

[115]  Mark W. Woolrich,et al.  Linked independent component analysis for multimodal data fusion , 2011, NeuroImage.

[116]  Raf Vandebril,et al.  A New Truncation Strategy for the Higher-Order Singular Value Decomposition , 2012, SIAM J. Sci. Comput..

[117]  Richard A. Harshman,et al.  Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .

[118]  Peter Richtárik,et al.  Parallel coordinate descent methods for big data optimization , 2012, Mathematical Programming.

[119]  Zenglin Xu,et al.  Infinite Tucker Decomposition: Nonparametric Bayesian Models for Multiway Data Analysis , 2011, ICML.

[120]  Pierre-Antoine Absil,et al.  RTRMC: A Riemannian trust-region method for low-rank matrix completion , 2011, NIPS.

[121]  Pierre Comon,et al.  Handbook of Blind Source Separation: Independent Component Analysis and Applications , 2010 .

[122]  Yongxin Yang,et al.  Deep Multi-task Representation Learning: A Tensor Factorisation Approach , 2016, ICLR.

[123]  G. Ehlers,et al.  Entanglement structure of the Hubbard model in momentum space , 2015, 1508.07477.

[124]  Ivan V. Oseledets,et al.  Fast Multidimensional Convolution in Low-Rank Tensor Formats via Cross Approximation , 2015, SIAM J. Sci. Comput..

[125]  Andrzej Cichocki,et al.  Era of Big Data Processing: A New Approach via Tensor Networks and Tensor Decompositions , 2014, ArXiv.

[126]  Alexander J. Smola,et al.  Fast and Guaranteed Tensor Decomposition via Sketching , 2015, NIPS.

[127]  U. Schollwoeck The density-matrix renormalization group in the age of matrix product states , 2010, 1008.3477.

[128]  B. Khoromskij O(dlog N)-Quantics Approximation of N-d Tensors in High-Dimensional Numerical Modeling , 2011 .

[129]  Michael Elad,et al.  From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images , 2009, SIAM Rev..

[130]  Denis Zorin,et al.  A Tensor-Train accelerated solver for integral equations in complex geometries , 2015, J. Comput. Phys..

[131]  Yurii Nesterov,et al.  Subgradient methods for huge-scale optimization problems , 2013, Mathematical Programming.

[132]  Boris N. Khoromskij,et al.  Efficient Computation of Highly Oscillatory Integrals by Using QTT Tensor Approximation , 2014, Comput. Methods Appl. Math..

[133]  G. Vidal Efficient classical simulation of slightly entangled quantum computations. , 2003, Physical review letters.

[134]  Andrzej Cichocki,et al.  Linked Component Analysis From Matrices to High-Order Tensors: Applications to Biomedical Data , 2015, Proceedings of the IEEE.

[135]  H. Vincent Poor,et al.  Robust iteratively reweighted Lasso for sparse tensor factorizations , 2014, 2014 IEEE Workshop on Statistical Signal Processing (SSP).

[136]  Steven R. White,et al.  Minimally entangled typical thermal state algorithms , 2010, 1002.1305.

[137]  Lieven De Lathauwer,et al.  Decompositions of a Higher-Order Tensor in Block Terms - Part III: Alternating Least Squares Algorithms , 2008, SIAM J. Matrix Anal. Appl..

[138]  Jennifer Seberry,et al.  The Strong Kronecker Product , 1994, J. Comb. Theory, Ser. A.

[139]  Kennedy,et al.  Rigorous results on valence-bond ground states in antiferromagnets. , 1987, Physical review letters.

[140]  G. Evenbly,et al.  Entanglement Renormalization and Wavelets. , 2016, Physical review letters.

[141]  Jure Leskovec,et al.  Tensor Spectral Clustering for Partitioning Higher-order Network Structures , 2015, SDM.

[142]  Radek Erban,et al.  Tensor methods for parameter estimation and bifurcation analysis of stochastic reaction networks , 2015, Journal of The Royal Society Interface.

[143]  Tamara G. Kolda,et al.  Parallel Tensor Compression for Large-Scale Scientific Data , 2015, 2016 IEEE International Parallel and Distributed Processing Symposium (IPDPS).

[144]  Andrzej Cichocki,et al.  Fast Alternating LS Algorithms for High Order CANDECOMP/PARAFAC Tensor Factorizations , 2013, IEEE Transactions on Signal Processing.

[145]  Andrzej Cichocki,et al.  Tensor Decompositions: A New Concept in Brain Data Analysis? , 2013, ArXiv.

[146]  Roman Orus,et al.  A Practical Introduction to Tensor Networks: Matrix Product States and Projected Entangled Pair States , 2013, 1306.2164.

[147]  Andrzej Cichocki,et al.  Adaptive Blind Signal and Image Processing - Learning Algorithms and Applications , 2002 .

[148]  Nikos D. Sidiropoulos,et al.  Robust iterative fitting of multilinear models , 2005, IEEE Transactions on Signal Processing.

[149]  Frank Verstraete,et al.  Matrix product state representations , 2006, Quantum Inf. Comput..

[150]  Bart Vandereycken,et al.  The geometry of algorithms using hierarchical tensors , 2013, Linear Algebra and its Applications.

[151]  Andrew Critch,et al.  Algebraic Geometry of Matrix Product States , 2012, 1210.2812.

[152]  Andrzej Cichocki,et al.  Regularized Computation of Approximate Pseudoinverse of Large Matrices Using Low-Rank Tensor Train Decompositions , 2015, SIAM J. Matrix Anal. Appl..

[153]  Gene H. Golub,et al.  Symmetric Tensors and Symmetric Tensor Rank , 2008, SIAM J. Matrix Anal. Appl..

[154]  S. Dolgov Tensor product methods in numerical simulation of high-dimensional dynamical problems , 2014 .

[155]  Fan Yang,et al.  Tensor and its tucker core: The invariance relationships , 2016, Numer. Linear Algebra Appl..

[156]  Andrzej Cichocki,et al.  Tensor Deflation for CANDECOMP/PARAFAC— Part I: Alternating Subspace Update Algorithm , 2015, IEEE Transactions on Signal Processing.

[157]  Tamara G. Kolda,et al.  MATLAB Tensor Toolbox , 2006 .

[158]  David F. Gleich,et al.  Tall and skinny QR factorizations in MapReduce architectures , 2011, MapReduce '11.

[159]  S Montangero,et al.  Quantum multiscale entanglement renormalization ansatz channels. , 2008, Physical review letters.

[160]  Lieven De Lathauwer,et al.  A Link between the Canonical Decomposition in Multilinear Algebra and Simultaneous Matrix Diagonalization , 2006, SIAM J. Matrix Anal. Appl..

[161]  Volkan Cevher,et al.  Technical Report No . 201 701 January 201 7 RANDOMIZED SINGLE-VIEW ALGORITHMS FOR LOW-RANK MATRIX APPROXIMATION , 2016 .

[162]  N. Alexander,et al.  Putting MRFs on a Tensor Train , 2014 .

[163]  Haobin Wang,et al.  Multilayer formulation of the multiconfiguration time-dependent Hartree theory , 2003 .

[164]  Andrzej Cichocki,et al.  Low rank tensor deconvolution , 2015, 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[165]  W. Hackbusch,et al.  A New Scheme for the Tensor Representation , 2009 .

[166]  Volkan Cevher,et al.  Convex Optimization for Big Data: Scalable, randomized, and parallel algorithms for big data analytics , 2014, IEEE Signal Processing Magazine.

[167]  Toshio Odanaka,et al.  ADAPTIVE CONTROL PROCESSES , 1990 .

[168]  Daniel Kressner,et al.  Algorithm 941 , 2014 .

[169]  Lars Karlsson,et al.  Parallel algorithms for tensor completion in the CP format , 2016, Parallel Comput..

[170]  Andrzej Cichocki,et al.  Tensor Decompositions for Signal Processing Applications: From two-way to multiway component analysis , 2014, IEEE Signal Processing Magazine.

[171]  Mario Bebendorf,et al.  Wideband nested cross approximation for Helmholtz problems , 2015, Numerische Mathematik.

[172]  Lieven De Lathauwer,et al.  Blind Separation of Exponential Polynomials and the Decomposition of a Tensor in Rank-(Lr, Lr, 1) Terms , 2011, SIAM J. Matrix Anal. Appl..

[173]  Andrzej Cichocki,et al.  Robust Multilinear Tensor Rank Estimation Using Higher Order Singular Value Decomposition and Information Criteria , 2017, IEEE Transactions on Signal Processing.

[174]  R. Bellman,et al.  V. Adaptive Control Processes , 1964 .

[175]  Joos Vandewalle,et al.  On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..

[176]  Emmanuel Vincent,et al.  Proceedings of the 10th international conference on Latent Variable Analysis and Signal Separation , 2010 .

[177]  Jeff M. Phillips,et al.  Improved Practical Matrix Sketching with Guarantees , 2016, IEEE Trans. Knowl. Data Eng..

[178]  Nico Vervliet,et al.  Breaking the Curse of Dimensionality Using Decompositions of Incomplete Tensors: Tensor-based scientific computing in big data analysis , 2014, IEEE Signal Processing Magazine.

[179]  Junzhou Huang,et al.  Preconditioning for Accelerated Iteratively Reweighted Least Squares in Structured Sparsity Reconstruction , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[180]  Evgeniy Gabrilovich,et al.  A Review of Relational Machine Learning for Knowledge Graphs , 2015, Proceedings of the IEEE.

[181]  M. Irani Vision Day Schedule Time Speaker and Collaborators Affiliation Title a General Preprocessing Method for Improved Performance of Epipolar Geometry Estimation Algorithms on the Expressive Power of Deep Learning: a Tensor Analysis , 2016 .

[182]  Daniel Kressner,et al.  Multigrid methods combined with low-rank approximation for tensor structured Markov chains , 2016 .

[183]  S. Goreinov,et al.  A Theory of Pseudoskeleton Approximations , 1997 .

[184]  Aapo Hyvärinen,et al.  Group-PCA for very large fMRI datasets , 2014, NeuroImage.

[185]  Chris H. Q. Ding,et al.  Simultaneous tensor subspace selection and clustering: the equivalence of high order svd and k-means clustering , 2008, KDD.

[186]  A. Uschmajew,et al.  On low-rank approximability of solutions to high-dimensional operator equations and eigenvalue problems , 2014, 1406.7026.

[187]  Vladimir A. Kazeev,et al.  Direct Solution of the Chemical Master Equation Using Quantized Tensor Trains , 2014, PLoS Comput. Biol..

[188]  J. Chang,et al.  Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .

[189]  Renato Pajarola,et al.  TAMRESH – Tensor Approximation Multiresolution Hierarchy for Interactive Volume Visualization , 2013, Comput. Graph. Forum.

[190]  Andrzej Cichocki,et al.  Smooth PARAFAC Decomposition for Tensor Completion , 2015, IEEE Transactions on Signal Processing.

[191]  Reinhold Schneider,et al.  The Alternating Linear Scheme for Tensor Optimization in the Tensor Train Format , 2012, SIAM J. Sci. Comput..

[192]  B. Khoromskij,et al.  Bethe-Salpeter excitation energies using low-rank tensor factorizations , 2015, 1505.02696.

[193]  W. Dur,et al.  Concatenated tensor network states , 2009, 0904.1925.

[194]  Daniel Kressner,et al.  A literature survey of low‐rank tensor approximation techniques , 2013, 1302.7121.

[195]  P. Tichavsky,et al.  Fast Approximate Joint Diagonalization Incorporating Weight Matrices , 2009, IEEE Transactions on Signal Processing.

[196]  Amnon Shashua,et al.  Convolutional Rectifier Networks as Generalized Tensor Decompositions , 2016, ICML.

[197]  Lieven De Lathauwer,et al.  Decompositions of a Higher-Order Tensor in Block Terms - Part II: Definitions and Uniqueness , 2008, SIAM J. Matrix Anal. Appl..

[198]  David E. Booth,et al.  Multi-Way Analysis: Applications in the Chemical Sciences , 2005, Technometrics.

[199]  Z. Y. Xie,et al.  Renormalization of tensor-network states , 2010, 1002.1405.

[200]  Sergio Cruces,et al.  Log-Determinant Divergences Revisited: Alpha-Beta and Gamma Log-Det Divergences , 2014, Entropy.

[201]  Nikos D. Sidiropoulos,et al.  From K-Means to Higher-Way Co-Clustering: Multilinear Decomposition With Sparse Latent Factors , 2013, IEEE Transactions on Signal Processing.

[202]  Geoffrey E. Hinton,et al.  Tensor Analyzers , 2013, ICML.

[203]  D. Pérez-García,et al.  PEPS as ground states: Degeneracy and topology , 2010, 1001.3807.

[204]  Ngai Wong,et al.  A constructive arbitrary‐degree Kronecker product decomposition of tensors , 2015, Numer. Linear Algebra Appl..

[205]  Nikos D. Sidiropoulos,et al.  Tensor Decomposition for Signal Processing and Machine Learning , 2016, IEEE Transactions on Signal Processing.

[206]  Morten Mørup,et al.  Applications of tensor (multiway array) factorizations and decompositions in data mining , 2011, WIREs Data Mining Knowl. Discov..

[207]  Oded Schwartz,et al.  Hypergraph Partitioning for Parallel Sparse Matrix-Matrix Multiplication , 2015, SPAA.

[208]  Dong Wang,et al.  Efficient dimension reduction for high-dimensional matrix-valued data , 2016, Neurocomputing.

[209]  Bart Vandereycken,et al.  Low-rank tensor completion by Riemannian optimization , 2014 .

[210]  Trac D. Tran,et al.  Tensor sparsification via a bound on the spectral norm of random tensors , 2010, ArXiv.

[211]  Vin de Silva,et al.  Tensor rank and the ill-posedness of the best low-rank approximation problem , 2006, math/0607647.

[212]  J. Ignacio Cirac,et al.  Unifying projected entangled pair state contractions , 2013, 1311.6696.

[213]  Edo Liberty,et al.  Efficient Frequent Directions Algorithm for Sparse Matrices , 2016, KDD.

[214]  Zoubin Ghahramani,et al.  Unifying linear dimensionality reduction , 2014, 1406.0873.

[215]  Ivan V. Oseledets,et al.  Approximation of 2d˟2d Matrices Using Tensor Decomposition , 2010, SIAM J. Matrix Anal. Appl..

[216]  Robert E. Mahony,et al.  Optimization Algorithms on Matrix Manifolds , 2007 .

[217]  Michael W. Mahoney Randomized Algorithms for Matrices and Data , 2011, Found. Trends Mach. Learn..

[218]  Pierre Comon,et al.  Multiarray Signal Processing: Tensor decomposition meets compressed sensing , 2010, ArXiv.

[219]  Wei Chu,et al.  Probabilistic Models for Incomplete Multi-dimensional Arrays , 2009, AISTATS.

[220]  Tamara G. Kolda,et al.  MATLAB tensor classes for fast algorithm prototyping. , 2004 .

[221]  Demetri Terzopoulos,et al.  Multilinear Analysis of Image Ensembles: TensorFaces , 2002, ECCV.

[222]  Stefan Handschuh,et al.  Numerical methods in Tensor Networks , 2014 .

[223]  R. Tibshirani,et al.  Sparse inverse covariance estimation with the graphical lasso. , 2008, Biostatistics.

[224]  Genevera I. Allen,et al.  Sparse non-negative generalized PCA with applications to metabolomics , 2011, Bioinform..

[225]  L. Tucker,et al.  Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.

[226]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[227]  Andrzej Cichocki,et al.  Fast and unique Tucker decompositions via multiway blind source separation , 2012 .

[228]  Andrzej Cichocki,et al.  On Revealing Replicating Structures in Multiway Data: A Novel Tensor Decomposition Approach , 2012, LVA/ICA.

[229]  Andrew Critch Algebraic Geometry of Hidden Markov and Related Models , 2013 .

[230]  Michael Steinlechner,et al.  Riemannian Optimization for High-Dimensional Tensor Completion , 2016, SIAM J. Sci. Comput..

[231]  Ngai Wong,et al.  A Constructive Algorithm for Decomposing a Tensor into a Finite Sum of Orthonormal Rank-1 Terms , 2014, SIAM J. Matrix Anal. Appl..

[232]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[233]  A. Yu. Mikhalev,et al.  Iterative representing set selection for nested cross approximation , 2013, Numer. Linear Algebra Appl..

[234]  David F. Gleich,et al.  Scalable Methods for Nonnegative Matrix Factorizations of Near-separable Tall-and-skinny Matrices , 2014, NIPS.

[235]  R. Pfeifer,et al.  NCON: A tensor network contractor for MATLAB , 2014, 1402.0939.

[236]  Ivan V. Oseledets,et al.  Solution of Linear Systems and Matrix Inversion in the TT-Format , 2012, SIAM J. Sci. Comput..

[237]  Dario Andrea Bini Tensor and border rank of certain classes of matrices and the fast evaluation of determinant inverse matrix and eigenvalues , 1985 .

[238]  Michael Griebel,et al.  Data Mining with Sparse Grids , 2001, Computing.

[239]  I. McCulloch,et al.  Strictly single-site DMRG algorithm with subspace expansion , 2015, 1501.05504.

[240]  S. Dolgov TT-GMRES: solution to a linear system in the structured tensor format , 2012, 1206.5512.

[241]  Lars Grasedyck,et al.  Hierarchical Singular Value Decomposition of Tensors , 2010, SIAM J. Matrix Anal. Appl..

[242]  P. Kroonenberg Applied Multiway Data Analysis , 2008 .

[243]  Percy Liang,et al.  Tensor Factorization via Matrix Factorization , 2015, AISTATS.

[244]  Andrzej Cichocki,et al.  Canonical Polyadic Decomposition Based on a Single Mode Blind Source Separation , 2012, IEEE Signal Processing Letters.

[245]  Zhihua Zhang,et al.  Improving CUR matrix decomposition and the Nyström approximation via adaptive sampling , 2013, J. Mach. Learn. Res..

[246]  White,et al.  Density-matrix algorithms for quantum renormalization groups. , 1993, Physical review. B, Condensed matter.

[247]  Oded Schwartz,et al.  Improving the Numerical Stability of Fast Matrix Multiplication , 2015, SIAM J. Matrix Anal. Appl..

[248]  Weichung Wang,et al.  Integrating multiple random sketches for singular value decomposition , 2016, 1608.08285.

[249]  Andrzej Cichocki,et al.  Very Large-Scale Singular Value Decomposition Using Tensor Train Networks , 2014, ArXiv.

[250]  Vladimir A. Kazeev,et al.  Multilevel Toeplitz Matrices Generated by Tensor-Structured Vectors and Convolution with Logarithmic Complexity , 2013, SIAM J. Sci. Comput..

[251]  Alejandro C Olivieri,et al.  Analytical advantages of multivariate data processing. One, two, three, infinity? , 2008, Analytical chemistry.

[252]  Reinhold Schneider,et al.  Dynamical Approximation by Hierarchical Tucker and Tensor-Train Tensors , 2013, SIAM J. Matrix Anal. Appl..

[253]  Stephen P. Boyd,et al.  Proximal Algorithms , 2013, Found. Trends Optim..

[254]  Charles F. Loan,et al.  Structured tensor computations: blocking, symmetries and kronecker factorizations , 2012 .

[255]  Jimeng Sun,et al.  An input-adaptive and in-place approach to dense tensor-times-matrix multiply , 2015, SC15: International Conference for High Performance Computing, Networking, Storage and Analysis.

[256]  Xuelong Li,et al.  General Tensor Discriminant Analysis and Gabor Features for Gait Recognition , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[257]  Aapo Hyvärinen,et al.  Independent component analysis of fMRI group studies by self-organizing clustering , 2005, NeuroImage.

[258]  Nikos D. Sidiropoulos,et al.  Tensors for Data Mining and Data Fusion , 2016, ACM Trans. Intell. Syst. Technol..

[259]  Martin Stoll,et al.  Fast tensor product solvers for optimization problems with fractional differential equations as constraints , 2016, Appl. Math. Comput..

[260]  Jimeng Sun,et al.  Beyond streams and graphs: dynamic tensor analysis , 2006, KDD '06.

[261]  Liqing Zhang,et al.  Kernelization of Tensor-Based Models for Multiway Data Analysis: Processing of Multidimensional Structured Data , 2013, IEEE Signal Processing Magazine.

[262]  Aapo Hyvärinen,et al.  Independent component analysis: recent advances , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[263]  Uwe Helmke,et al.  Riemannian Optimization on Tensor Products of Grassmann Manifolds: Applications to Generalized Rayleigh-Quotients , 2010, SIAM J. Matrix Anal. Appl..

[264]  Haiping Lu,et al.  A survey of multilinear subspace learning for tensor data , 2011, Pattern Recognit..