Deep learning-based spam image filtering

[1]  Yeong-Seok Seo,et al.  Hybrid Features by Combining Visual and Text Information to Improve Spam Filtering Performance , 2022, Electronics.

[2]  Sagar Kaulagi,et al.  Email Spam Filtering using Machine Learning , 2022, International Journal of Advanced Research in Science, Communication and Technology.

[3]  A. R. Javed,et al.  A comprehensive survey of AI-enabled phishing attacks detection techniques , 2020, Telecommun. Syst..

[4]  Aaisha Makkar,et al.  PROTECTOR: An optimized deep learning-based framework for image spam detection and prevention , 2021, Future Gener. Comput. Syst..

[5]  Hajah T. Sueno Multi-class Document Classification using Support Vector Machine (SVM) Based on Improved Naïve Bayes Vectorization Technique , 2020 .

[6]  A. Chattopadhyay,et al.  Data‐Driven Super‐Parameterization Using Deep Learning: Experimentation With Multiscale Lorenz 96 Systems and Transfer Learning , 2020, Journal of Advances in Modeling Earth Systems.

[7]  Mark Stamp,et al.  Convolutional neural networks for image spam detection , 2020, Inf. Secur. J. A Glob. Perspect..

[8]  Quoc V. Le,et al.  Unsupervised Data Augmentation for Consistency Training , 2019, NeurIPS.

[9]  Ausif Mahmood,et al.  Review of Deep Learning Algorithms and Architectures , 2019, IEEE Access.

[10]  Manisha Sharma,et al.  Spam detection in social media using convolutional and long short term memory neural network , 2019, Annals of Mathematics and Artificial Intelligence.

[11]  سهاد احمد علي القره غولي Analysis Study of Spam Image-based Emails Filtering Techniques , 2018 .

[12]  Lina A. Abuwardih Towards Evaluating Web Spam Threats and Countermeasures , 2018 .

[13]  Aiwan Fan,et al.  Image spam filtering using convolutional neural networks , 2018, Pers. Ubiquitous Comput..

[14]  Guangyu Sun,et al.  Reducing Overfitting in Deep Convolutional Neural Networks Using Redundancy Regularizer , 2017, ICANN.

[15]  Jerzy Stefanowski,et al.  Prequential AUC: properties of the area under the ROC curve for data streams with concept drift , 2017, Knowledge and Information Systems.

[16]  R. Balamurugan,et al.  Visual and textual features based email spam classification using S-Cuckoo search and hybrid kernel support vector machine , 2017, Cluster Computing.

[17]  Mark Stamp,et al.  Image spam analysis and detection , 2018, Journal of Computer Virology and Hacking Techniques.

[18]  Robert H. Deng,et al.  On robust image spam filtering via comprehensive visual modeling , 2015, Pattern Recognit..

[19]  M. N. Sulaiman,et al.  A Review On Evaluation Metrics For Data Classification Evaluations , 2015 .

[20]  V. Khanaa,et al.  An Integrated Agent System for E-mail Coordination using Jade , 2013 .

[21]  S. Maria Wenisch,et al.  A Content Based Classification of Spam Mails with Fuzzy Word Ranking , 2013 .

[22]  Jiawei Han,et al.  Survey on web spam detection: principles and algorithms , 2012, SKDD.

[23]  Fabio Roli,et al.  A survey and experimental evaluation of image spam filtering techniques , 2011, Pattern Recognit. Lett..

[24]  Yiming Yang,et al.  Personalized Email Prioritization Based on Content and Social Network Analysis , 2010, IEEE Intelligent Systems.

[25]  Carlo Sansone,et al.  Visual and OCR-Based Features for Detecting Image Spam , 2008, PRIS.

[26]  Lina J. Karam,et al.  Morphological text extraction from images , 2000, IEEE Trans. Image Process..