An effective ant-based algorithm for the degree-constrained minimum spanning tree problem

The minimum spanning tree problem with an added constraint that no node in the spanning tree has the degree more than a specified integer d, is known as the degree-constrained minimum spanning tree problem. Finding the degree-constrained minimum spanning tree of a graph is a well-studied NP-hard problem. This paper presents an effective ant-based algorithm for the degree-constrained minimum spanning tree problem. Experimental results on a benchmark set of problem instances show that the algorithm performs very well against previous algorithms.

[1]  Marimuthu Palaniswami,et al.  Comparison of Heuristic Algorithms for the Degree Constrained Minimum Spanning Tree , 1996 .

[2]  David S. Johnson,et al.  The NP-Completeness Column: An Ongoing Guide , 1982, J. Algorithms.

[3]  David S. Johnson,et al.  The NP-Completeness Column: An Ongoing Guide , 1982, J. Algorithms.

[4]  Daniel J. Rosenkrantz,et al.  An Analysis of Several Heuristics for the Traveling Salesman Problem , 1977, SIAM J. Comput..

[5]  André Carlos Ponce de Leon Ferreira de Carvalho,et al.  Node-Depth Encoding for Evolutionary Algorithms Applied to Network Design , 2004, GECCO.

[6]  Narsingh Deo,et al.  Minimum-Weight Degree-Constrained Spanning Tree Problem: Heuristics and Implementation on an SIMD Parallel Machine , 1996, Parallel Comput..

[7]  Bezalel Gavish,et al.  Topological design of centralized computer networks - formulations and algorithms , 1982, Networks.

[8]  R. Ravi,et al.  Many birds with one stone: multi-objective approximation algorithms , 1993, STOC '93.

[9]  R. Jonker,et al.  The symmetric traveling salesman problem and edge exchanges in minimal 1-trees , 1983 .

[10]  David W. Corne,et al.  A Powerful New Encoding for Tree-Based Combinatorial Optimisation Problems , 2004, PPSN.

[11]  Thang Nguyen Bui,et al.  An ant-based algorithm for finding degree-constrained minimum spanning tree , 2006, GECCO.

[12]  David W. Corne,et al.  A new evolutionary approach to the degree-constrained minimum spanning tree problem , 1999, IEEE Trans. Evol. Comput..

[13]  Alex Karel Obruca Spanning Tree Manipulation and the Travelling Salesman Problem , 1968, Comput. J..

[14]  Andreas T. Ernst,et al.  Comparison of Algorithms for the Degree Constrained Minimum Spanning Tree , 2001, J. Heuristics.

[15]  J. Deneubourg,et al.  Self-organized shortcuts in the Argentine ant , 1989, Naturwissenschaften.

[16]  Martin W. P. Savelsbergh,et al.  Edge exchanges in the degree-constrained minimum spanning tree problem , 1985, Comput. Oper. Res..

[17]  G. Raidl An efficient evolutionary algorithm for the degree-constrained minimum spanning tree problem , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[18]  Henry D. Shapiro,et al.  An Empirical Assessment of Algorithms for Constructing a Minimum Spanning Tree , 1992, Computational Support for Discrete Mathematics.

[19]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[20]  Bryant A. Julstrom,et al.  Edge sets: an effective evolutionary coding of spanning trees , 2003, IEEE Trans. Evol. Comput..

[21]  A. Volgenant A Lagrangean approach to the degree-constrained minimum spanning tree problem , 1989 .

[22]  Bryant A. Julstrom,et al.  A weighted coding in a genetic algorithm for the degree-constrained minimum spanning tree problem , 2000, SAC '00.

[23]  Emile H. L. Aarts,et al.  Simulated Annealing: Theory and Applications , 1987, Mathematics and Its Applications.

[24]  Paul J. Werbos,et al.  Building and Understanding Adaptive Systems: A Statistical/Numerical Approach to Factory Automation and Brain Research , 1987, IEEE Transactions on Systems, Man, and Cybernetics.

[25]  Luca Maria Gambardella,et al.  Ant colony system: a cooperative learning approach to the traveling salesman problem , 1997, IEEE Trans. Evol. Comput..

[26]  Samir Khuller,et al.  Low-Degree Spanning Trees of Small Weight , 1996, SIAM J. Comput..

[27]  J. Deneubourg,et al.  Trails and U-turns in the Selection of a Path by the Ant Lasius niger , 1992 .

[28]  Mitsuo Gen,et al.  A note on genetic algorithms for degree-constrained spanning tree problems , 1997, Networks.

[29]  Christos H. Papadimitriou,et al.  On Two Geometric Problems Related to the Traveling Salesman Problem , 1984, J. Algorithms.

[30]  M. Gen,et al.  A note on genetic algorithms for degree‐constrained spanning tree problems , 1997 .

[31]  Subhash C. Narula,et al.  Degree-constrained minimum spanning tree , 1980, Comput. Oper. Res..