Symmetric and symplectic exponentially fitted Runge-Kutta-Nyström methods for Hamiltonian problems

The construction of symmetric and symplectic exponentially fitted modified Runge-Kutta-Nystrom (SSEFRKN) methods is considered. Based on the symmetry, symplecticity, and exponentially fitted conditions, new explicit modified RKN integrators with FSAL property are obtained. The new integrators integrate exactly differential systems whose solutions can be expressed as linear combinations of functions from the set {exp(+/[email protected])}, @w>0, i^2=-1, or equivalently from the set {cos(@wt), sin(@wt)}. The phase properties of the new integrators are examined and their periodicity regions are obtained. Numerical experiments are accompanied to show the high efficiency and competence of the new SSEFRKN methods compared with some highly efficient nonsymmetric symplecti EFRKN methods in the literature.

[1]  T. E. Simos,et al.  An exponentially-fitted Runge-Kutta method for the numerical integration of initial-value problems with periodic or oscillating solutions , 1998 .

[2]  Wilson C. K. Poon,et al.  Phase behavior and crystallization kinetics of PHSA-coated PMMA colloids , 2003 .

[3]  Peter Albrecht,et al.  A new theoretical approach to Runge-Kutta methods , 1987 .

[4]  H. De Meyer,et al.  Exponentially fitted Runge-Kutta methods , 2000 .

[5]  E. Hairer,et al.  Solving ordinary differential equations I (2nd revised. ed.): nonstiff problems , 1993 .

[6]  Oliver Lundqvist,et al.  Numerical Methods for Ordinary Differential Equations , 2013, An Introduction to Numerical Methods and Analysis 3e.

[7]  Hans Van de Vyver,et al.  A symplectic exponentially fitted modified Runge–Kutta–Nyström method for the numerical integration of orbital problems , 2005 .

[8]  J. M. Sanz-Serna,et al.  Numerical Hamiltonian Problems , 1994 .

[9]  Hans Van de Vyver A fourth-order symplectic exponentially fitted integrator , 2006, Comput. Phys. Commun..

[10]  J. M. Sanz-Serna,et al.  Symplectic integrators for Hamiltonian problems: an overview , 1992, Acta Numerica.

[11]  J. Butcher Numerical methods for ordinary differential equations , 2003 .

[12]  Deyin Zhao,et al.  Importance of the first-order derivative formula in the Obrechkoff method , 2005, Comput. Phys. Commun..

[13]  J. M. Franco Exponentially fitted explicit Runge-Kutta-Nyström methods , 2004 .

[14]  R. Scherer,et al.  Gauss-Runge-Kutta-Nyström methods , 1998 .

[15]  J. M. Franco,et al.  High-order P-stable multistep methods , 1990 .

[16]  Wei Shi,et al.  Symmetric and symplectic ERKN methods for oscillatory Hamiltonian systems , 2012, Comput. Phys. Commun..

[17]  R. Van Dooren Stabilization of Cowell's classical finite difference method for numerical integration , 1974 .

[18]  T. E. Simos,et al.  Exponentially fitted symplectic integrator. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  G. Vanden Berghe,et al.  Exponential fitted Runge--Kutta methods of collocation type: fixed or variable knot points? , 2003 .

[20]  J. M. Franco Exponentially fitted symplectic integrators of RKN type for solving oscillatory problems , 2007, Comput. Phys. Commun..

[21]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[22]  Mari Paz Calvo,et al.  High-Order Symplectic Runge-Kutta-Nyström Methods , 1993, SIAM J. Sci. Comput..

[23]  Liviu Gr. Ixaru,et al.  P-stability and exponential-fitting methods for y″″ = f(x, y) , 1996 .

[24]  Wojciech Rozmus,et al.  A symplectic integration algorithm for separable Hamiltonian functions , 1990 .

[25]  Xinyuan Wu,et al.  Structure-Preserving Algorithms for Oscillatory Differential Equations , 2013 .

[26]  Jesús Vigo-Aguiar,et al.  Symplectic conditions for exponential fitting Runge-Kutta-Nyström methods , 2005, Math. Comput. Model..

[27]  Xinyuan Wu,et al.  Extended RKN-type methods for numerical integration of perturbed oscillators , 2009, Comput. Phys. Commun..

[28]  Beatrice Paternoster,et al.  Runge-Kutta(-Nystro¨m) methods for ODEs with periodic solutions based on trigonometric polynomials , 1998 .