Symmetric and symplectic exponentially fitted Runge-Kutta-Nyström methods for Hamiltonian problems
暂无分享,去创建一个
[1] T. E. Simos,et al. An exponentially-fitted Runge-Kutta method for the numerical integration of initial-value problems with periodic or oscillating solutions , 1998 .
[2] Wilson C. K. Poon,et al. Phase behavior and crystallization kinetics of PHSA-coated PMMA colloids , 2003 .
[3] Peter Albrecht,et al. A new theoretical approach to Runge-Kutta methods , 1987 .
[4] H. De Meyer,et al. Exponentially fitted Runge-Kutta methods , 2000 .
[5] E. Hairer,et al. Solving ordinary differential equations I (2nd revised. ed.): nonstiff problems , 1993 .
[6] Oliver Lundqvist,et al. Numerical Methods for Ordinary Differential Equations , 2013, An Introduction to Numerical Methods and Analysis 3e.
[7] Hans Van de Vyver,et al. A symplectic exponentially fitted modified Runge–Kutta–Nyström method for the numerical integration of orbital problems , 2005 .
[8] J. M. Sanz-Serna,et al. Numerical Hamiltonian Problems , 1994 .
[9] Hans Van de Vyver. A fourth-order symplectic exponentially fitted integrator , 2006, Comput. Phys. Commun..
[10] J. M. Sanz-Serna,et al. Symplectic integrators for Hamiltonian problems: an overview , 1992, Acta Numerica.
[11] J. Butcher. Numerical methods for ordinary differential equations , 2003 .
[12] Deyin Zhao,et al. Importance of the first-order derivative formula in the Obrechkoff method , 2005, Comput. Phys. Commun..
[13] J. M. Franco. Exponentially fitted explicit Runge-Kutta-Nyström methods , 2004 .
[14] R. Scherer,et al. Gauss-Runge-Kutta-Nyström methods , 1998 .
[15] J. M. Franco,et al. High-order P-stable multistep methods , 1990 .
[16] Wei Shi,et al. Symmetric and symplectic ERKN methods for oscillatory Hamiltonian systems , 2012, Comput. Phys. Commun..
[17] R. Van Dooren. Stabilization of Cowell's classical finite difference method for numerical integration , 1974 .
[18] T. E. Simos,et al. Exponentially fitted symplectic integrator. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.
[19] G. Vanden Berghe,et al. Exponential fitted Runge--Kutta methods of collocation type: fixed or variable knot points? , 2003 .
[20] J. M. Franco. Exponentially fitted symplectic integrators of RKN type for solving oscillatory problems , 2007, Comput. Phys. Commun..
[21] Ernst Hairer,et al. Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .
[22] Mari Paz Calvo,et al. High-Order Symplectic Runge-Kutta-Nyström Methods , 1993, SIAM J. Sci. Comput..
[23] Liviu Gr. Ixaru,et al. P-stability and exponential-fitting methods for y″″ = f(x, y) , 1996 .
[24] Wojciech Rozmus,et al. A symplectic integration algorithm for separable Hamiltonian functions , 1990 .
[25] Xinyuan Wu,et al. Structure-Preserving Algorithms for Oscillatory Differential Equations , 2013 .
[26] Jesús Vigo-Aguiar,et al. Symplectic conditions for exponential fitting Runge-Kutta-Nyström methods , 2005, Math. Comput. Model..
[27] Xinyuan Wu,et al. Extended RKN-type methods for numerical integration of perturbed oscillators , 2009, Comput. Phys. Commun..
[28] Beatrice Paternoster,et al. Runge-Kutta(-Nystro¨m) methods for ODEs with periodic solutions based on trigonometric polynomials , 1998 .