Tungsten mineralization formed by single-pulsed magmatic fluid: Evidence from wolframite-hosted fluid inclusion from the giant Dajishan “Five Floor” style W-polymetallic deposit

[1]  L. Han,et al.  Tungsten and tin deposits in South China: temporal and spatial distribution, metallogenic models and prospecting directions , 2023, Ore Geology Reviews.

[2]  Junyi Pan,et al.  Fluid Processes of Wolframite-Quartz Vein Systems: Progresses and Challenges , 2022, Minerals.

[3]  Junyi Pan,et al.  Co-genetic formation of scheelite- and wolframite-bearing quartz veins in the Chuankou W deposit, South China: Evidence from individual fluid inclusion and wall-rock alteration analysis , 2022, Ore Geology Reviews.

[4]  M. Cathelineau,et al.  TUNGSTEN (VI) SPECIATION IN HYDROTHERMAL SOLUTIONS UP TO 400°C AS REVEALED BY IN-SITU RAMAN SPECTROSCOPY , 2021, Geochimica et Cosmochimica Acta.

[5]  P. Ni,et al.  A review of the Yanshanian ore-related felsic magmatism and tectonic settings in the Nanling W-Sn and Wuyi Au-Cu metallogenic belts, Cathaysia Block, South China , 2021 .

[6]  J. Charvet,et al.  Neoproterozoic plate tectonic process and Phanerozoic geodynamic evolution of the South China Block , 2021 .

[7]  D. Alderton Fluid Inclusions , 2021, Encyclopedia of Geology.

[8]  Junyi Pan,et al.  Ore‐forming Fluid and Metallogenic Mechanism of Wolframite–Quartz Vein‐type Tungsten Deposits in South China , 2020, Acta Geologica Sinica - English Edition.

[9]  M. Palmer,et al.  Boron isotope variations in tourmaline from hydrothermal ore deposits: A review of controlling factors and insights for mineralizing systems , 2020, Ore Geology Reviews.

[10]  A. Rompel,et al.  Polyoxometalates in solution: speciation under spotlight. , 2020, Chemical Society reviews.

[11]  Junyi Pan,et al.  A possible linkage between highly fractionated granitoids and associated W-mineralization in the Mesozoic Yaogangxian granitic intrusion, Nanling region, South China , 2020 .

[12]  M. Santosh,et al.  Infrared microthermometry of fluid inclusions in transparent to opaque minerals: challenges and new insights , 2020, Mineralium Deposita.

[13]  A. Williams-Jones,et al.  An experimental study of the solubility and speciation of tungsten in NaCl-bearing aqueous solutions at 250, 300, and 350 °C , 2019, Geochimica et Cosmochimica Acta.

[14]  A. Audétat The Metal Content of Magmatic-Hydrothermal Fluids and Its Relationship to Mineralization Potential , 2019, Economic Geology.

[15]  Junyi Pan,et al.  Comparison of fluid processes in coexisting wolframite and quartz from a giant vein-type tungsten deposit, South China: Insights from detailed petrography and LA-ICP-MS analysis of fluid inclusions , 2019, American Mineralogist.

[16]  L. Bailly,et al.  Multiple fluids involved in granite-related W-Sn deposits from the world-class Jiangxi province (China) , 2019, Chemical Geology.

[17]  K. Kouzmanov,et al.  Fluid Inclusion Studies in Opaque Ore Minerals: II. A Comparative Study of Syngenetic Synthetic Fluid Inclusions Hosted in Quartz and Opaque Minerals , 2018, Economic Geology.

[18]  K. Kouzmanov,et al.  Fluid Inclusion Studies in Opaque Ore Minerals: I. Trace Element Content and Physical Properties of Ore Minerals Controlling Textural Features in Transmitted Near-Infrared Light Microscopy , 2018, Economic Geology.

[19]  Junyi Pan,et al.  The link between fluid evolution and vertical zonation at the Maoping tungsten deposit, Southern Jiangxi, China: Fluid inclusion and stable isotope evidence , 2018, Journal of Geochemical Exploration.

[20]  Junyi Pan,et al.  Fluid inclusion characteristics as an indicator for tungsten mineralization in the Mesozoic Yaogangxian tungsten deposit, central Nanling district, South China , 2017, Journal of Geochemical Exploration.

[21]  P. Weis,et al.  Depressurization and boiling of a single magmatic fluid as a mechanism for tin-tungsten deposit formation , 2018 .

[22]  R. Vieira,et al.  Fluid-rock interaction is decisive for the formation of tungsten deposits , 2017 .

[23]  I. Samson,et al.  Textural and Chemical Constraints on the Formation of Disseminated Granite-hosted W-Ta-Nb Mineralization at the Dajishan Deposit, Nanling Range, Southeastern China , 2017 .

[24]  V. Lüders Contribution of infrared microscopy to studies of fluid inclusions hosted in some opaque ore minerals: possibilities, limitations, and perspectives , 2017, Mineralium Deposita.

[25]  C. Heinrich,et al.  Chemical evolution of metamorphic fluids in the Central Alps, Switzerland: insight from LA‐ICPMS analysis of fluid inclusions , 2016 .

[26]  H. Xing,et al.  Influences of fluid properties on the hydrothermal fluid flow and alteration halos at the Dajishan tungsten deposit, China , 2016 .

[27]  R. Romer,et al.  Phanerozoic tin and tungsten mineralization—Tectonic controls on the distribution of enriched protoliths and heat sources for crustal melting , 2016 .

[28]  Junyi Pan,et al.  An infrared microthermometric study of fluid inclusions in coexisting quartz and wolframite from Late Mesozoic tungsten deposits in the Gannan metallogenic belt, South China , 2015 .

[29]  H. Xing,et al.  Fluid focusing and its link to vertical morphological zonation at the Dajishan vein-type tungsten deposit, South China , 2014 .

[30]  D. Ma,et al.  Multiple-aged granitoids and related tungsten-tin mineralization in the Nanling Range, South China , 2013, Science China Earth Sciences.

[31]  T. Wagner,et al.  Late-metamorphic veins record deep ingression of meteoric water: A LA-ICPMS fluid inclusion study from the fold-and-thrust belt of the Rhenish Massif, Germany , 2013 .

[32]  C. Heinrich,et al.  Major and trace-element composition and pressure–temperature evolution of rock-buffered fluids in low-grade accretionary-wedge metasediments, Central Alps , 2013, Contributions to Mineralogy and Petrology.

[33]  Mao Jingwen,et al.  Major types and time–space distribution of Mesozoic ore deposits in South China and their geodynamic settings , 2013, Mineralium Deposita.

[34]  Robert J. Bodnar,et al.  HokieFlincs_H2O-NaCl: A Microsoft Excel spreadsheet for interpreting microthermometric data from fluid inclusions based on the PVTX properties of H2O-NaCl , 2012, Comput. Geosci..

[35]  Mei-Fu Zhou,et al.  Multiple Mesozoic mineralization events in South China—an introduction to the thematic issue , 2012, Mineralium Deposita.

[36]  Jian‐tang Peng,et al.  Infrared microthermometric and stable isotopic study of fluid inclusions in wolframite at the Xihuashan tungsten deposit, Jiangxi province, China , 2012, Mineralium Deposita.

[37]  E. Nakamura,et al.  Fluid–rock interaction in the Qitianling granite and associated tin deposits, South China: Evidence from boron and oxygen isotopes , 2011 .

[38]  Jung Hun Seo,et al.  Microanalysis of S, Cl, and Br in fluid inclusions by LA–ICP-MS , 2011 .

[39]  Mei-Fu Zhou,et al.  Reappraisal of the ages of Neoproterozoic strata in south China; no connection with the Grenvillian Orogeny , 2011 .

[40]  W. Fan,et al.  Mesozoic large magmatic events and mineralization in SE China: oblique subduction of the Pacific plate , 2011 .

[41]  A. Sial,et al.  Granite-related ore deposits , 2011 .

[42]  A. Williams-Jones,et al.  The Genesis of Distal Zinc Skarns: Evidence from the Mochito Deposit, Honduras , 2010 .

[43]  J. Charvet,et al.  Structural development of the Lower Paleozoic belt of South China: Genesis of an intracontinental orogen , 2010 .

[44]  Zeng Zai-lin Application of "Five levels+Basement" Model for Prospecting Deposits into Depth , 2010 .

[45]  T. Pettke,et al.  The Bingham Canyon Porphyry Cu-Mo-Au Deposit. III. Zoned Copper-Gold Ore Deposition by Magmatic Vapor Expansion , 2010 .

[46]  P. Monié,et al.  Intracontinental subduction: a possible mechanism for the Early Palaeozoic Orogen of SE China , 2009 .

[47]  T. Pettke,et al.  Evolution of Magmatic Vapor to Gold-Rich Epithermal Liquid: The Porphyry to Epithermal Transition at Nevados de Famatina, Northwest Argentina , 2009 .

[48]  Xiaolei Wang,et al.  Geochronology of Neoproterozoic mafic rocks and sandstones from northeastern Guizhou, South China: Coeval arc magmatism and sedimentation , 2009 .

[49]  Xixi Zhao,et al.  Mesozoic tectonic evolution of the Southeast China Block: New insights from basin analysis , 2009 .

[50]  K. Zhao,et al.  Middle to late Jurassic felsic and mafic magmatism in southern Hunan province, southeast China: Implications for a continental arc to rifting , 2009 .

[51]  A. Williams-Jones,et al.  Source of fluids forming distal Zn-Pb-Ag skarns: Evidence from laser ablation–inductively coupled plasma–mass spectrometry analysis of fluid inclusions from El Mochito, Honduras , 2008 .

[52]  Jung Hun Seo,et al.  Determination of sulfur in fluid inclusions by laser ablation ICP-MS , 2008 .

[53]  P. Ni,et al.  Constraining ultrahigh-pressure (UHP) metamorphism and titanium ore formation from an infrared microthermometric study of fluid inclusions in rutile from Donghai UHP eclogites, eastern China , 2008 .

[54]  R. Bodnar,et al.  Special Paper: The Composition of Magmatic-Hydrothermal Fluids in Barren and Mineralized Intrusions , 2008 .

[55]  Dongliang Zhang,et al.  A precise U–Pb age on cassiterite from the Xianghualing tin-polymetallic deposit (Hunan, South China) , 2008 .

[56]  T. Pettke,et al.  Fluid and source magma evolution of the Questa porphyry Mo deposit, New Mexico, USA , 2008 .

[57]  Michel Faure,et al.  Late Palaeozoic{Early Mesozoic geological features of South China: Response to the Indosinian collision events in Southeast Asia , 2008 .

[58]  C. Heinrich,et al.  SILLS: A MATLAB-based program for the reduction of laser ablation ICP-MS data of homogeneous materials and inclusions , 2008 .

[59]  T. Pettke,et al.  Hydrothermal Evolution of the El Teniente Deposit, Chile: Porphyry Cu-Mo Ore Deposition from Low-Salinity Magmatic Fluids , 2007 .

[60]  Mao Jing Large-scale tungsten-tin mineralization in the Nanling region,South China:Metallogenic ages and corresponding geodynamic processes. , 2007 .

[61]  Zhang Wenlan New Dating of the Dajishan Granite and Related Tungsten Mineralization in Southern Jiangxi , 2006 .

[62]  D. Banks,et al.  Validation of LA-ICP-MS fluid inclusion analysis with synthetic fluid inclusions , 2005 .

[63]  C. Heinrich,et al.  Compositions of magmatic hydrothermal fluids determined by LA-ICP-MS of fluid inclusions from the porphyry copper-molybdenum deposit at Butte, MT , 2004 .

[64]  T. Pettke,et al.  Fluid evolution in the W-Cu-Zn-Pb San Cristobal vein, Peru: fluid inclusion and stable isotope evidence , 2004 .

[65]  P. Burnard,et al.  Importance of mantle derived fluids during granite associated hydrothermal circulation: He and Ar isotopes of ore minerals from Panasqueira , 2004 .

[66]  C. Allen Zircon ELA-ICP-MS Dating for Wuliting Pluton at Dajishan, Southern Jiangxi and New Recognition about Its Relation to Tungsten Mineralization , 2004 .

[67]  Zhang Wenlan Single Zircon U-Pb Isotopic Age of the Wuliting Granite in Dajishan Area of Jiangxi, and Its Geological Implication , 2004 .

[68]  Detlef Günther,et al.  Quantitative multi-element analysis of minerals, fluid and melt inclusions by laser-ablation inductively-coupled-plasma mass-spectrometry , 2003 .

[69]  Huaqi Li,et al.  Mineralization and Fluid Inclusion Study of the Shizhuyuan W-Sn-Bi-Mo-F Skarn Deposit, Hunan Province, China , 2003 .

[70]  F. Rios,et al.  Fluid evolution in the Pedra Preta wolframite ore deposit, Paleoproterozoic Musa granite, eastern Amazon craton, Brazil , 2003 .

[71]  Hua Renmin,et al.  Early Yanshanian post-orogenic granitoids in the Nanling region —— Petrological constraints and geodynamic settings , 2002 .

[72]  S. Peacock,et al.  Letters. Isotopic and elemental partitioning of boron between hydrous fluid and silicate melt , 2002 .

[73]  L. Bailly,et al.  INFRARED MICROTHERMOMETRY AND CHEMISTRY OF WOLFRAMITE FROM THE BAIA SPRIE EPITHERMAL DEPOSIT, ROMANIA , 2002 .

[74]  R. Kerrich,et al.  Giant quartz vein systems in accretionary orogenic belts: the evidence for a metamorphic fluid origin from δ 15 N and δ 13 C studies , 2000 .

[75]  D. Günther,et al.  Causes for Large-Scale Metal Zonation around Mineralized Plutons: Fluid Inclusion LA-ICP-MS Evidence from the Mole Granite, Australia , 2000 .

[76]  S. Wood,et al.  The Hydrothermal Geochemistry of Tungsten in Granitoid Environments: I. Relative Solubilities of Ferberite and Scheelite as a Function of T, P, pH, and mNaCl , 2000 .

[77]  U. Kempe,et al.  Fluid regime and ore formation in the tungsten(–yttrium) deposits of Kyzyltau (Mongolian Altai): evidence for fluid variability in tungsten–tin ore systems , 1999 .

[78]  B. Jahn,et al.  Crustal evolution of southeastern China: Nd and Sr isotopic evidence , 1998 .

[79]  J. Charvet,et al.  Kinematics and geochronology of the Proterozoic Dongxiang-Shexian ductile shear zone: with HP metamorphism and ophiolitic melange (Jiangnan Region, South China) , 1996 .

[80]  Volker Lueders,et al.  Contribution of infrared microscopy to fluid inclusion studies in some opaque minerals (wolframite, stibnite, bournonite); metallogenic implications , 1996 .

[81]  A. Williams-Jones,et al.  The role of greisenization in cassiterite precipitation at the East Kemptville tin deposit, Nova Scotia , 1996 .

[82]  D. Dingwell,et al.  Experimental studies of boron in granitic melts , 1996 .

[83]  D. Günther,et al.  Inter-laboratory note. Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation , 1996 .

[84]  L. Diamond,et al.  Post-metamorphic gold-quartz veins from N.W. Italy: the composition and origin of the ore fluid , 1993, Mineralogical Magazine.

[85]  Ma Dongsheng,et al.  Vein-type tungsten deposits of China and adjoining regions , 1993 .

[86]  R. Bodnar Revised equation and table for determining the freezing point depression of H2O-Nacl solutions , 1993 .

[87]  J. Dandurand,et al.  Modeling of the transport and deposition of tungsten in the scheelite-bearing calc-silicate gneisses of the Montagne Noire, France , 1992 .

[88]  A. Williams-Jones,et al.  The role of water-rock interaction and fluid evolution in forming the porphyry-related Sisson Brook W-Cu-Mo deposit, New Brunswick , 1991 .

[89]  A. McCaig,et al.  The chemistry of brines from an Alpine thrust system in the Central Pyrenees: An application of fluid inclusion analysis to the study of fluid behaviour in orogenesis , 1991 .

[90]  A. Andrew,et al.  Fluid inclusion and stable isotope evidence for interaction between granites and magmatic hydrothermal fluids during formation of disseminated and pipe-style mineralization at the Zaaiplaats tin mine , 1991 .

[91]  C. Heinrich The chemistry of hydrothermal tin(-tungsten) ore deposition , 1990 .

[92]  I. Samson Fluid evolution and mineralization in a subvolcanic granite stock; the Mount Pleasant W-Mo-Sn deposits, New Brunswick, Canada , 1990 .

[93]  A. Campbell,et al.  Infrared fluid inclusion microthermometry on coexisting wolframite and quartz , 1987 .

[94]  N. Higgins Wolframite deposition in a hydrothermal vein system; the Grey River tungsten prospect, Newfoundland, Canada , 1985 .

[95]  T. K. Ball,et al.  Mineralisation at the Carrock Fell Tungsten Mine, N. England: Paragenetic, fluid inclusion and geochemical study , 1985 .

[96]  Andrew R. Campbell,et al.  Internal features of ore minerals seen with the infrared microscope , 1984 .

[97]  G. Tanelli Geological setting, mineralogy and genesis of tungsten mineralization in Dayu district, JiangXi (People's Republic of China): An outline , 1982 .

[98]  R. Rye,et al.  Geologic, fluid inclusion, and stable isotope studies of the tin-tungsten deposits of Panasqueira, Portugal , 1979 .

[99]  S. Ishihara The Magnetite-series and Ilmenite-series Granitic Rocks , 1977 .

[100]  K. Hsu Tungsten deposits of southern Kiangsi, China , 1943 .