Molecular diversity and functions of glutamate receptors.

RECEPTORS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320 MULTIPLICITY OF GLUTAMATE RECEPTORS .. . .. . .. . . . .... . .. . .. . . . 321 Gene Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321 Alternative Splicing . . . ... . .. . . ... . . ... .. ... . .. .. . . . ... . . . . . . . . . .. .. . . 327 RNA Editing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330 Heteromeric Formation . . . . . . . .. .. . . , ,. 331 Expression Pattern . . . . .. . .. . . . .. ... . . . . . . . . .. . . . .. . .. . .. .. . . . .. . . . . . . 332 STRUCTURES OF GLUTAMATE RECEPTORS . . . . . . . . . . . . . . . . . . . . . . . . . . 333 Transmembrane Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333 Glutamate-Binding Domain ... . . .. . . . . .. .. . . . . . . . . . .. . .. . .. . . . ..... ... 334 Channel Pore . . . . .. . .. . .. ... . . . . . . . . .. . . . . . . .. . ... . . .. .. . .. . .. .... . .. 336 Phosphorylation Site . . . . . . .. . .. . . . . .. .. . .. .. . .. . .. . . . .. . .. .. . ... .. . . . 337 Other Possible Regulatory Sites . .. . . . .. . . . . . . .. ... . . .. . . . . .. ... ... . .. . 338 IMPLICATIONS OF GLUTAMATE RECEPTOR DIVERSITY AND FUTURE PROSPECTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338

[1]  S. Nakanishi,et al.  Selective up-regulation of an nmda receptor subunit mrna in cultured cerebellar granule cells by K+-induced depolarization and nmda treatment , 1994, Neuron.

[2]  S. Nakanishi,et al.  Role of a metabotropic glutamate receptor in synaptic modulation in the accessory olfactory bulb , 1993, Nature.

[3]  S. Nakanishi,et al.  Distribution of the mRNA for a metabotropic glutamate receptor (mGluR3) in the rat brain: An in situ hybridization study , 1993, The Journal of comparative neurology.

[4]  R. Huganir,et al.  Regulation of NMDA receptor phosphorylation by alternative splicing of the C-terminal domain , 1993, Nature.

[5]  E. J. Fletcher,et al.  A Comparison of Two Alternatively Spliced Forms of a Metabotropic Glutamate Receptor Coupled to Phosphoinositide Turnover , 1993, Journal of neurochemistry.

[6]  Terri L. Gilbert,et al.  The ligand-binding domain in metabotropic glutamate receptors is related to bacterial periplasmic binding proteins , 1993, Neuron.

[7]  C. Burant,et al.  Molecular cloning of an apolipoprotein B messenger RNA editing protein. , 1993, Science.

[8]  T. Kuner,et al.  Subunit‐specific block of cloned NMDA receptors by argiotoxin636 , 1993, FEBS letters.

[9]  H Nawa,et al.  Molecular characterization of a novel retinal metabotropic glutamate receptor mGluR6 with a high agonist selectivity for L-2-amino-4-phosphonobutyrate. , 1993, The Journal of biological chemistry.

[10]  H. Monyer,et al.  Argiotoxin detects molecular differences in AMPA receptor channels , 1993, Neuron.

[11]  R. Huganir,et al.  The distribution of glutamate receptors in cultured rat hippocampal neurons: Postsynaptic clustering of AMPA selective subunits , 1993, Neuron.

[12]  E. Golanov,et al.  Antisense oligodeoxynucleotides to NMDA-R1 receptor channel protect cortical neurons from excitotoxicity and reduce focal ischaemic infarctions , 1993, Nature.

[13]  T. Yamakura,et al.  Involvement of the carboxyl-terminal region in modulation by TPA of the NMDA receptor channel. , 1993, Neuroreport.

[14]  S. Heinemann,et al.  Zinc potentiates agonist-lnduced currents at certain splice variants of the NMDA receptor , 1993, Neuron.

[15]  S. Nakanishi,et al.  Distribution of the messenger RNA for a metabotropic glutamate receptor, mGluR2, in the central nervous system of the rat , 1993, Neuroscience.

[16]  L. Raymond,et al.  Phosphorylation of amino acid neurotransmitter receptors in synaptic plasticity , 1993, Trends in Neurosciences.

[17]  B. Sakmann,et al.  Determinants of ca2+ permeability in both TM1 and TM2 of high affinity kainate receptor channels: Diversity by RNA editing , 1993, Neuron.

[18]  R. Huganir,et al.  AMPA glutamate receptor subunits are differentially distributed in rat brain , 1993, Neuroscience.

[19]  P Cicchetti,et al.  Identification of a ten-amino acid proline-rich SH3 binding site. , 1993, Science.

[20]  L. Wang,et al.  Phosphorylation and modulation of a kainate receptor (GluR6) by cAMP-dependent protein kinase. , 1993, Science.

[21]  S. Nakanishi,et al.  Molecular cloning and chromosomal localization of the key subunit of the human N-methyl-D-aspartate receptor. , 1993, The Journal of biological chemistry.

[22]  K. Moriyoshi,et al.  Molecular characterization of the family of the N-methyl-D-aspartate receptor subunits. , 1993, The Journal of biological chemistry.

[23]  S. Petrou,et al.  A putative fatty acid-binding domain of the NMDA receptor. , 1993, Trends in biochemical sciences.

[24]  W Wisden,et al.  The rat delta‐1 and delta‐2 subunits extend the excitatory amino acid receptor family , 1993, FEBS letters.

[25]  T. Bliss,et al.  A synaptic model of memory: long-term potentiation in the hippocampus , 1993, Nature.

[26]  Masahiko Watanabe,et al.  Cloning and expression of the ε4 subunit of the NMDA receptor channel , 1992 .

[27]  D. Choi Excitotoxic cell death. , 1992, Journal of neurobiology.

[28]  S. Heinemann,et al.  Alternative splicing generates metabotropic glutamate receptors inducing different patterns of calcium release in Xenopus oocytes. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[29]  R. Dingledine,et al.  Structural determinants of barium permeation and rectification in non- NMDA glutamate receptor channels , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[30]  B. Sakmann,et al.  Control by asparagine residues of calcium permeability and magnesium blockade in the NMDA receptor. , 1992, Science.

[31]  K. Nagahari,et al.  Mutations in a putative agonist binding region of the AMPA‐selective glutamate receptor channel , 1992, FEBS letters.

[32]  T. Yamakura,et al.  Identification by mutagenesis of a Mg2+ -block site of the NMDA receptor channel , 1992, Nature.

[33]  J. Rossier,et al.  AMPA receptor subunits expressed by single purkinje cells , 1992, Neuron.

[34]  S. Nakanishi,et al.  Distribution of the mRNA for a metabotropic glutamate receptor (mGluR1) in the central nervous system: An in situ hybridization study in adult and developing rat , 1992, The Journal of comparative neurology.

[35]  Alcino J. Silva,et al.  Deficient hippocampal long-term potentiation in alpha-calcium-calmodulin kinase II mutant mice. , 1992, Science.

[36]  S. Nakanishi,et al.  Molecular characterization of a novel metabotropic glutamate receptor mGluR5 coupled to inositol phosphate/Ca2+ signal transduction. , 1992, The Journal of biological chemistry.

[37]  K. Sakimura,et al.  Molecular diversity of the NMDA receptor channel , 1992, Nature.

[38]  S. Nakanishi,et al.  Structures and properties of seven isoforms of the NMDA receptor generated by alternative splicing. , 1992, Biochemical and biophysical research communications.

[39]  S. Rabacchi,et al.  Involvement of the N-methyl D-aspartate (NMDA) receptor in synapse elimination during cerebellar development. , 1992, Science.

[40]  T. Berger,et al.  Calcium entry through kainate receptors and resulting potassium-channel blockade in Bergmann glial cells. , 1992, Science.

[41]  Bert Sakmann,et al.  Heteromeric NMDA Receptors: Molecular and Functional Distinction of Subtypes , 1992, Science.

[42]  M. Yamazaki,et al.  Functional characterization of a heteromeric NMDA receptor channel expressed from cloned cDNAs , 1992, Nature.

[43]  R. Petralia,et al.  Light and electron immunocytochemical localization of AMPA‐selective glutamate receptors in the rat brain , 1992, The Journal of comparative neurology.

[44]  Li Chen,et al.  Protein kinase C reduces Mg2+ block of NMDA-receptor channels as a mechanism of modulation , 1992, Nature.

[45]  K. Sakimura,et al.  Primary structure and expression of the γ 2 subunit of the glutamate receptor channel selective for kainate , 1992, Neuron.

[46]  S. Nakanishi,et al.  A family of metabotropic glutamate receptors , 1992, Neuron.

[47]  B. Sakmann,et al.  Divalent ion permeability of AMPA receptor channels is dominated by the edited form of a single subunit , 1992, Neuron.

[48]  E. Michaelis,et al.  Cloning of cDNA for the glutamate-binding subunit of an NMDA receptor complex , 1991, Nature.

[49]  E. Barnard,et al.  Cloning of a cDNA that encodes an invertebrate glutamate receptor subunit , 1991, FEBS letters.

[50]  P. Seeburg,et al.  RNA editing in brain controls a determinant of ion flow in glutamate-gated channels , 1991, Cell.

[51]  Z. Hall,et al.  Extracellular domains mediating ɛ subunit interactions of muscle acetylcholine receptor , 1991, Nature.

[52]  J. Rossier,et al.  A chimeric glutamate receptor subunit: discrete changes modify the properties of the channel. , 1991, Biochemical and biophysical research communications.

[53]  S. Heinemann,et al.  Cloning of a cDNA for a glutamate receptor subunit activated by kainate but not AMPA , 1991, Nature.

[54]  B. Sakmann,et al.  Structural determinants of ion flow through recombinant glutamate receptor channels , 1991, Science.

[55]  Terri L. Gilbert,et al.  Cloning, expression, and gene structure of a G protein-coupled glutamate receptor from rat brain. , 1991, Science.

[56]  S. Heinemann,et al.  Ca2+ permeability of KA-AMPA--gated glutamate receptor channels depends on subunit composition , 1991, Science.

[57]  H. Monyer,et al.  Glutamate-operated channels: Developmentally early and mature forms arise by alternative splicing , 1991, Neuron.

[58]  M. Ek,et al.  Solubilization, partial purification, and reconstitution of glutamate- and N-methyl-D-aspartate-activated cation channels from brain synaptic membranes. , 1991 .

[59]  R. Scobey,et al.  Permeation of calcium ions through non-NMDA glutamate channels in retinal bipolar cells. , 1991, Science.

[60]  G. Falk,et al.  Glutamate receptors of rod bipolar cells are linked to a cyclic GMP cascade via a G-protein , 1990, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[61]  R. Axel,et al.  A family of glutamate receptor genes: Evidence for the formation of heteromultimeric receptors with distinct channel properties , 1990, Neuron.

[62]  M. Yamazaki,et al.  Functional expression from cloned cDNAs of glutamate receptor species responsive to kainate and quisqualate , 1990, FEBS letters.

[63]  J. Garthwaite,et al.  Excitatory amino acid neurotoxicity and neurodegenerative disease. , 1990, Trends in pharmacological sciences.

[64]  Scott Nawy,et al.  Suppression by glutamate of cGMP-activated conductance in retinal bipolar cells , 1990, Nature.

[65]  P. Seeburg,et al.  The role of receptor subtype diversity in the CNS , 1990, Trends in Neurosciences.

[66]  S. Heinemann,et al.  Cloning by functional expression of a member of the glutamate receptor family , 1989, Nature.

[67]  E. Costa,et al.  Excitatory amino acid recognition sites coupled with inositol phospholipid metabolism: developmental changes and interaction with alpha 1-adrenoceptors. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[68]  R. Balázs,et al.  Cerebellar Granule Cells and the Neurobiology of Excitatory Amino Acids , 1992 .

[69]  A. Ullrich,et al.  Protein kinase C , 1987, Journal of cellular physiology. Supplement.

[70]  J. Watkins,et al.  Structure-activity relationships in the development of excitatory amino acid receptor agonists and competitive antagonists. , 1990, Trends in pharmacological sciences.

[71]  M. Caron,et al.  Structure of the adrenergic and related receptors. , 1989, Annual review of neuroscience.

[72]  M. Ito,et al.  Long-term depression. , 1989, Annual review of neuroscience.

[73]  S. Nakanishi,et al.  cDNA eloping of bovine substance-K receptor through oocyte expression system , 1987, Nature.

[74]  H. Sugiyama,et al.  A new type of glutamate receptor linked to inositol phospholipid metabolism , 1987, Nature.

[75]  S. Numa A molecular view of neurotransmitter receptors and ionic channels. , 1987, Harvey lectures.