On the lattice of sub-pseudovarieties of DA
暂无分享,去创建一个
[1] Michael A. Arbib,et al. Algebraic theory of machines, languages and semigroups , 1969 .
[2] J. Howie. Fundamentals of semigroup theory , 1995 .
[3] Peter G. Trotter,et al. The lattice of pseudovarieties of idempotent semigroups and a non-regular analogue , 1997 .
[4] Mario Petrich,et al. Varieties of Bands Revisited , 1989 .
[5] Charles Frederick Fennemore,et al. All varieties of bands , 1970 .
[6] Martin Lange,et al. The Complexity of Model Checking Higher-Order Fixpoint Logic , 2007, Log. Methods Comput. Sci..
[7] T. E. Hall,et al. On Radical Congruence Systems , 1999 .
[8] Denis Thérien,et al. DIAMONDS ARE FOREVER: THE VARIETY DA , 2002 .
[9] M. Schützenberger,et al. Sur Le Produit De Concatenation Non Ambigu , 1976 .
[10] Jorge Almeida,et al. Finite Semigroups and Universal Algebra , 1995 .
[11] Manfred Kufleitner,et al. On FO2 Quantifier Alternation over Words , 2009, MFCS.
[12] A. P. Biryukov. Varieties of idempotent semigroups , 1970 .
[13] Faith Ellen,et al. A Characterization of a Dot-Depth Two Analogue of Generalized Definite Languages , 1979, ICALP.
[14] Denis Thérien,et al. Logic Meets Algebra: the Case of Regular Languages , 2007, Log. Methods Comput. Sci..
[15] Kamal Lodaya,et al. Marking the chops: an unambiguous temporal logic , 2008, IFIP TCS.
[16] Shelly L. Wismath,et al. The lattices of varieties and pseudovarieties of band monoids , 1986 .
[17] Neil Immerman,et al. Structure Theorem and Strict Alternation Hierarchy for FO2 on Words , 2006, Circuits, Logic, and Games.
[18] Raymond E. Miller,et al. Varieties of Formal Languages , 1986 .
[19] Jean-Eric Pin,et al. Profinite Semigroups, Mal'cev Products, and Identities☆ , 1996 .
[20] Thomas Wilke,et al. Over words, two variables are as powerful as one quantifier alternation , 1998, STOC '98.
[21] Pascal Weil,et al. Some results on the dot-depth hierarchy , 1993 .
[22] Dirk Pattinson,et al. Representations of Stream Processors Using Nested Fixed Points , 2009, Log. Methods Comput. Sci..
[23] Pascal Weil,et al. Profinite Methods in Semigroup Theory , 2002, Int. J. Algebra Comput..
[24] J. Gerhard,et al. The lattice of equational classes of idempotent semigroups , 1970 .
[25] Complete endomorphisms of the lattice of pseudovarieties of finite semigroups , 1997, Bulletin of the Australian Mathematical Society.