On the lattice of sub-pseudovarieties of DA

The wealth of information that is available on the lattice of varieties of bands, is used to illuminate the structure of the lattice of sub-pseudovarieties of DA, a natural generalization of bands which plays an important role in language theory and in logic. The main result describes a hierarchy of decidable sub-pseudovarieties of DA in terms of iterated Mal’cev products with the pseudovarieties of definite and reverse definite semigroups.

[1]  Michael A. Arbib,et al.  Algebraic theory of machines, languages and semigroups , 1969 .

[2]  J. Howie Fundamentals of semigroup theory , 1995 .

[3]  Peter G. Trotter,et al.  The lattice of pseudovarieties of idempotent semigroups and a non-regular analogue , 1997 .

[4]  Mario Petrich,et al.  Varieties of Bands Revisited , 1989 .

[5]  Charles Frederick Fennemore,et al.  All varieties of bands , 1970 .

[6]  Martin Lange,et al.  The Complexity of Model Checking Higher-Order Fixpoint Logic , 2007, Log. Methods Comput. Sci..

[7]  T. E. Hall,et al.  On Radical Congruence Systems , 1999 .

[8]  Denis Thérien,et al.  DIAMONDS ARE FOREVER: THE VARIETY DA , 2002 .

[9]  M. Schützenberger,et al.  Sur Le Produit De Concatenation Non Ambigu , 1976 .

[10]  Jorge Almeida,et al.  Finite Semigroups and Universal Algebra , 1995 .

[11]  Manfred Kufleitner,et al.  On FO2 Quantifier Alternation over Words , 2009, MFCS.

[12]  A. P. Biryukov Varieties of idempotent semigroups , 1970 .

[13]  Faith Ellen,et al.  A Characterization of a Dot-Depth Two Analogue of Generalized Definite Languages , 1979, ICALP.

[14]  Denis Thérien,et al.  Logic Meets Algebra: the Case of Regular Languages , 2007, Log. Methods Comput. Sci..

[15]  Kamal Lodaya,et al.  Marking the chops: an unambiguous temporal logic , 2008, IFIP TCS.

[16]  Shelly L. Wismath,et al.  The lattices of varieties and pseudovarieties of band monoids , 1986 .

[17]  Neil Immerman,et al.  Structure Theorem and Strict Alternation Hierarchy for FO2 on Words , 2006, Circuits, Logic, and Games.

[18]  Raymond E. Miller,et al.  Varieties of Formal Languages , 1986 .

[19]  Jean-Eric Pin,et al.  Profinite Semigroups, Mal'cev Products, and Identities☆ , 1996 .

[20]  Thomas Wilke,et al.  Over words, two variables are as powerful as one quantifier alternation , 1998, STOC '98.

[21]  Pascal Weil,et al.  Some results on the dot-depth hierarchy , 1993 .

[22]  Dirk Pattinson,et al.  Representations of Stream Processors Using Nested Fixed Points , 2009, Log. Methods Comput. Sci..

[23]  Pascal Weil,et al.  Profinite Methods in Semigroup Theory , 2002, Int. J. Algebra Comput..

[24]  J. Gerhard,et al.  The lattice of equational classes of idempotent semigroups , 1970 .

[25]  Complete endomorphisms of the lattice of pseudovarieties of finite semigroups , 1997, Bulletin of the Australian Mathematical Society.