Set-monotonicity implies Kelly-strategyproofness

This paper studies the strategic manipulation of set-valued social choice functions according to Kelly’s preference extension, which prescribes that one set of alternatives is preferred to another if and only if all elements of the former are preferred to all elements of the latter. It is shown that set-monotonicity—a new variant of Maskin-monotonicity—implies Kelly-strategyproofness in comprehensive subdomains of the linear domain. Interestingly, there are a handful of appealing Condorcet extensions—such as the top cycle, the minimal covering set, and the bipartisan set—that satisfy set-monotonicity even in the unrestricted linear domain, thereby answering questions raised independently by Barberà (J Econ Theory 15(2):266–278(1977a)) and Kelly (Econometrica 45(2):439–446 (1977)).

[1]  Arunava Sen,et al.  Strategy-proof Social Choice Correspondences , 2001, J. Econ. Theory.

[2]  Taradas Bandyopadhyay Threats, counter-threats and strategic manipulation for non-binary group decision rules , 1982, Math. Soc. Sci..

[3]  Jeffrey Richelson Some Further Results on Consistency, Rationality and Collective Choice , 1978 .

[4]  Prasanta K. Pattanaik,et al.  Strategic voting under minimally binary group decision functions , 1981 .

[5]  John Duggan,et al.  Strategic manipulability without resoluteness or shared beliefs: Gibbard-Satterthwaite generalized , 2000, Soc. Choice Welf..

[6]  Shin Sato On strategy-proof social choice correspondences , 2009, Soc. Choice Welf..

[7]  Piotr Faliszewski,et al.  A Richer Understanding of the Complexity of Election Systems , 2006, Fundamental Problems in Computing.

[8]  Eitan Muller,et al.  The equivalence of strong positive association and strategy-proofness , 1977 .

[9]  J. H. Smith AGGREGATION OF PREFERENCES WITH VARIABLE ELECTORATE , 1973 .

[10]  H. Chernoff Rational Selection of Decision Functions , 1954 .

[11]  Jean-François Laslier,et al.  Rank-based choice correspondences , 1996 .

[12]  H. P. Young,et al.  An axiomatization of Borda's rule , 1974 .

[13]  H. Moulin Condorcet's principle implies the no show paradox , 1988 .

[14]  Thomas Schwartz Cyclic tournaments and cooperative majority voting: A solution , 1990 .

[15]  Taradas Bandyopadhyay Manipulation of non-imposed, non-oligarchic, non-binary group decision rules , 1983 .

[16]  A. Sen,et al.  Social Choice Theory: A Re-Examination , 1977 .

[17]  Bernard Monjardet Statement of precedence and a comment on IIA terminology , 2008, Games Econ. Behav..

[18]  Bhaskar Dutta,et al.  On the tournament equilibrium set , 1990 .

[19]  Piotr Faliszewski,et al.  AI's War on Manipulation: Are We Winning? , 2010, AI Mag..

[20]  Salvador Barberà Manipulation of social decision functions , 1977 .

[21]  William S. Zwicker,et al.  Monotonicity properties and their adaptation to irresolute social choice rules , 2012, Soc. Choice Welf..

[22]  Georges Bordes On the possibility of reasonable consistent majoritarian choice: Some positive results , 1983 .

[23]  Erkut Y. Ozbay,et al.  Revealed Attention , 2009 .

[24]  M. Breton,et al.  The Bipartisan Set of a Tournament Game , 1993 .

[25]  Allan Gibbard,et al.  Straightforwardness of Game Forms with Lotteries as Outcomes , 1978 .

[26]  Peter C. Fishburn,et al.  Paradoxes of Preferential Voting , 1983 .

[27]  Inon Zuckerman,et al.  Universal Voting Protocol Tweaks to Make Manipulation Hard , 2003, IJCAI.

[28]  S. Barberà Chapter Twenty-Five - Strategyproof Social Choice , 2011 .

[29]  E. Rowland Theory of Games and Economic Behavior , 1946, Nature.

[30]  A. Gibbard Manipulation of Schemes That Mix Voting with Chance , 1977 .

[31]  Jean-François Laslier,et al.  Aggregation of preferences with a variable set of alternatives , 2000, Soc. Choice Welf..

[32]  Joaquín Pérez Ortega,et al.  An extension of the Moulin No Show Paradox for voting correspondences , 2009, Soc. Choice Welf..

[33]  Lin Zhou,et al.  Multi-valued strategy-proof social choice rules , 2002, Soc. Choice Welf..

[34]  Alan D. Taylor,et al.  Social choice and the mathematics of manipulation , 2005 .

[35]  I. Good A note on condorcet sets , 1971 .

[36]  Taradas Bandyopadhyay Multi-valued decision rules and coalitional non-manipulability: Two possibility theorems , 1983 .

[37]  Salvador Barberà,et al.  A Note on Group Strategy-Proof Decision Schemes , 1979 .

[38]  Vincent Conitzer,et al.  When are elections with few candidates hard to manipulate? , 2007, J. ACM.

[39]  Jean-François Laslier,et al.  Composition-consistent tournament solutions and social choice functions , 1996 .

[40]  Felix Brandt,et al.  Set-rationalizable choice and self-stability , 2009, J. Econ. Theory.

[41]  Bhaskar Dutta,et al.  Comparison functions and choice correspondences , 1999 .

[42]  P. Gärdenfors Manipulation of social choice functions , 1976 .

[43]  Bettina Klaus,et al.  The relation between monotonicity and strategy-proofness , 2013, Soc. Choice Welf..

[44]  Andreu Mas-Colell,et al.  General Possibility Theorems for Group Decisions , 1972 .

[45]  Salvador Barberà,et al.  Individual versus group strategy-proofness: When do they coincide? , 2010, J. Econ. Theory.

[46]  Vincent Conitzer,et al.  Nonexistence of Voting Rules That Are Usually Hard to Manipulate , 2006, AAAI.

[47]  Felix Brandt,et al.  Minimal stable sets in tournaments , 2008, J. Econ. Theory.

[48]  Felix Brandt,et al.  Necessary and sufficient conditions for the strategyproofness of irresolute social choice functions , 2011, TARK XIII.

[49]  Felix Brandt,et al.  Finding strategyproof social choice functions via SAT solving , 2014, AAMAS.

[50]  M. Satterthwaite Strategy-proofness and Arrow's conditions: Existence and correspondence theorems for voting procedures and social welfare functions , 1975 .

[51]  Salvador Barberà,et al.  THE MANIPULATION OF SOCIAL CHOICE MECHANISMS THAT DO NOT LEAVE "TOO MUCH" TO CHANCE' , 1977 .

[52]  Masashi Umezawa Coalitionally strategy-proof social choice correspondences and the Pareto rule , 2009, Soc. Choice Welf..

[53]  A. Gibbard Manipulation of Voting Schemes: A General Result , 1973 .

[54]  E. Maskin Nash Equilibrium and Welfare Optimality , 1999 .

[55]  A. Feldman,et al.  Nonmanipulable multi-valued social decision functions , 1979 .

[56]  Georges Bordes,et al.  Consistency, Rationality and Collective Choice , 1976 .

[57]  Jerry S. Kelly,et al.  STRATEGY-PROOFNESS AND SOCIAL CHOICE FUNCTIONS WITHOUT SINGLEVALUEDNESS , 1977 .

[58]  Dongmo Zhang,et al.  The logic of collective choice , 1988, AAMAS.

[59]  Ayzerman,et al.  Theory of choice , 1995 .

[60]  Paul D. Seymour,et al.  A counterexample to a conjecture of Schwartz , 2013, Soc. Choice Welf..

[61]  Jean-François Laslier,et al.  Tournament Solutions And Majority Voting , 1997 .

[62]  David Austen-Smith,et al.  Positive Political Theory II: Strategy and Structure , 2005 .

[63]  Klaus Nehring Monotonicity implies generalized strategy-proofness for correspondences , 2000, Soc. Choice Welf..

[64]  S. Barberà Strategy-proof social choice , 2010 .

[65]  Felix A. Fischer,et al.  Computing the minimal covering set , 2008, Math. Soc. Sci..

[66]  Noam Nisan,et al.  Elections Can be Manipulated Often , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[67]  Allan M. Feldman Manipulation and the Pareto rule , 1979 .

[68]  The Strong No Show Paradoxes are a common flaw in Condorcet voting correspondences , 2001, Soc. Choice Welf..