Formulation for Observed and Computed Values of Deep Space Network Data Types for Navigation
暂无分享,去创建一个
[1] W. D. Sitter. On Einstein's Theory of Gravitation and its Astronomical Consequences , 1916 .
[2] A. Eddington,et al. The problem of n bodies in general relativity theory , 1938 .
[3] Paul Melchior,et al. Earth Tides , 1952, Nature.
[4] W. M. Kaula,et al. An introduction to planetary physics : the terrestrial planets , 1968 .
[5] D. A. Dunnett. Classical Electrodynamics , 2020, Nature.
[6] T. D. Moyer. Mathematical formulation of the Double Precision Orbit Determination Program /DPODP/ , 1971 .
[7] Clifford M. Will,et al. Conservation Laws and Preferred Frames in Relativistic Gravity. I. Preferred-Frame Theories and an Extended PPN Formalism , 1972 .
[8] D. E. Cartwright,et al. Corrected Tables of Tidal Harmonics , 1973 .
[9] R. Wagoner,et al. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity , 1973 .
[10] C. Chao,et al. The tropospheric calibration model for Mariner Mars 1971 , 1974 .
[11] John A. Klobuchar,et al. A First-Order, Worldwide, Ionospheric, Time-Delay Algorithm , 1975 .
[12] J. B. Thomas. Reformulation of the relativistic conversion between coordinate time and atomic time , 1975 .
[13] New optical and radio frequency angular tropospheric refraction models for deep space applications , 1976 .
[14] T. Lederle,et al. Expressions for the precession quantities based upon the IAU /1976/ system of astronomical constants , 1977 .
[15] Modification of the DSN Radio Frequency Angular Tropospheric Refraction Model , 1977 .
[16] J. Wahr. Body tides on an elliptical rotating earth , 1978 .
[17] J. H. Lieske. Precession matrix based on IAU /1976/ system of astronomical constants , 1979 .
[18] C. F. Peters. Numerical integration of the satellites of the outer planets , 1981 .
[19] J. D. Anderson,et al. Solar wind electron densities from Viking dual-frequency radio measurements , 1981 .
[20] Transformation from proper time on Earth to coordinate time in solar system barycentric space-time frame of reference , 1981 .
[21] E. M. Standish,et al. DE 102: a numerically integrated ephemeris of the moon and planets spanning forty-four centuries. , 1983 .
[22] Hiroshi Kinoshita,et al. Note on the relation between the equinox and Guinot's non-rotating origin , 1983 .
[23] John M. Wahr,et al. Deformation induced by polar motion , 1985 .
[24] R. Hellings,et al. Relativistic effects in astronomical timing measurements. , 1986 .
[25] X X Newhall. Numerical representation of planetary ephemerides , 1988 .
[26] Analytical expression of TDB-TDT 0 . , 1988 .
[27] Ashby,et al. Relativistic effects in local inertial frames including parametrized-post-Newtonian effects. , 1988, Physical review. D, Particles and fields.
[28] X. Newhall,et al. Investigating relativity using lunar laser ranging: geodetic precession and the Nordtvedt effect. , 1989 .
[29] E. Standish. The observational basis for JPL's DE 200, the planetary ephemerides of the Astronomical Almanac , 1990 .
[30] M. Watkins,et al. Relativistic effects for near-earth satellite orbit determination , 1990, Celestial Mechanics and Dynamical Astronomy.
[31] H. Scherneck. A parametrized solid earth tide model and ocean tide loading effects for global geodetic baseline measurements , 1991 .
[32] O. J. Sovers,et al. Observation model and parameter partials for the JPL VLBI parameter estimation software MODEST/1991 , 1991 .
[33] Clifford M. Will,et al. Theory and Experiment in Gravitational Physics , 1982 .
[34] P. K. Seidelmann,et al. Report of the IAU/IAG/COSPAR Working Group on Cartographic Coordinates and Rotational Elements of the Planets and Satellites: 1994 , 1995 .
[35] A. Niell. Global mapping functions for the atmosphere delay at radio wavelengths , 1996 .