Comparing surface digitization techniques in palaeontology using visual perceptual metrics and distance computations between 3D meshes

Berliner Hochschulprogramm fur Wissenschaftlerinnen und Kunstlerinnen ‚DiGiTal – Digitalisierung: Gestaltung und Transformation‘

[1]  Qing Zhu,et al.  Quantitative analysis of discrete 3D geometrical detail levels based on perceptual metric , 2010, Comput. Graph..

[2]  M. Friess,et al.  Surface scanning of anthropological specimens: nominal-actual comparison with low cost laser scanner and high end fringe light projection surface scanning systems Oberflächenscannen anthropologischer Objekte: Soll-Ist Vergleiche mit einem niedrigpreisigen Laserscanner und hochpreisigen Streifenlicht , 2010 .

[3]  M. Sutton A three-dimensionally preserved fossil polychaete worm from the Silurian of Herefordshire, England , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[4]  Peter L. Falkingham,et al.  Acquisition of high resolution three-dimensional models using free, open-source, photogrammetric software , 2012 .

[5]  Joseph E. Peterson,et al.  COMPARISONS OF FIDELITY IN THE DIGITIZATION AND 3D PRINTING OF VERTEBRATE FOSSILS , 2017 .

[6]  Karl T. Bates,et al.  High-resolution LiDAR and photogrammetric survey of the Fumanya dinosaur tracksites (Catalonia): implications for the conservation and interpretation of geological heritage sites , 2008, Journal of the Geological Society.

[7]  Brent H. Breithaupt,et al.  THE APPLICATION OF PHOTOGRAMMETRY, REMOTE SENSING AND GEOGRAPHIC INFORMATION SYSTEMS (GIS) TO FOSSIL RESOURCE MANAGEMENT , 2006 .

[8]  Jesús Marugán-Lobón,et al.  Open data and digital morphology , 2017, Proceedings of the Royal Society B: Biological Sciences.

[9]  H. Godfray,et al.  Linnaeus in the information age , 2007, Nature.

[10]  Basilio Ramos Barbero,et al.  Comparative study of different digitization techniques and their accuracy , 2011, Comput. Aided Des..

[11]  M. Quinto-Sánchez,et al.  Photogrammetry: a useful tool for three-dimensional morphometric analysis of small mammals , 2016 .

[12]  Sebastian K T S Wärmländer,et al.  Variation in the Measurement of Cranial Volume and Surface Area Using 3D Laser Scanning Technology , 2010, Journal of forensic sciences.

[13]  Guillaume Lavoué,et al.  A Multiscale Metric for 3D Mesh Visual Quality Assessment , 2011, Comput. Graph. Forum.

[14]  Measuring Complex Morphological Traits with 3D Photogrammetry: A Case Study with Deer Antlers , 2020, Evolutionary Biology.

[15]  Guillaume Lavoué,et al.  MEPP - 3D Mesh Processing Platform , 2012, GRAPP/IVAPP.

[16]  Chris Robinson,et al.  Error in geometric morphometric data collection: Combining data from multiple sources. , 2017, American journal of physical anthropology.

[17]  Libor Vása,et al.  Perceptual Metrics for Static and Dynamic Triangle Meshes , 2013, Eurographics.

[18]  Heinrich Mallison,et al.  The Digital Plateosaurus II: An Assessment of the Range of Motion of the Limbs and Vertebral Column and of Previous Reconstructions using a Digital Skeletal Mount , 2010 .

[19]  Emmanuel P. Baltsavias,et al.  A comparison between photogrammetry and laser scanning , 1999 .

[20]  Nicole Torres-Tamayo,et al.  Workflows in a Virtual Morphology Lab: 3D scanning, measuring, and printing. , 2019, Journal of anthropological sciences = Rivista di antropologia : JASS.

[21]  Gabriele Guidi,et al.  3D DIGITIZATION OF MUSEUM CONTENT WITHIN THE 3DICONS PROJECT , 2013 .

[22]  Deg Briggs,et al.  Methodologies for the visualization and reconstruction of three-dimensional fossils from the Silurian Herefordshire Lagerstätte , 2001 .

[23]  G. Larson,et al.  The use of close-range photogrammetry in zooarchaeology: Creating accurate 3D models of wolf crania to study dog domestication , 2016 .

[24]  David Katz,et al.  Technical note: 3D from standard digital photography of human crania-a preliminary assessment. , 2014, American journal of physical anthropology.

[25]  Verónica Díez Díaz,et al.  Reconstructing hypothetical sauropod tails by means of 3D digitization: Lirainosaurus astibiae as case study , 2017, Journal of Iberian Geology.

[26]  Sarah Faulwetter,et al.  Micro-computed tomography: Introducing new dimensions to taxonomy , 2013, ZooKeys.

[27]  L. Jacobs,et al.  HIGH RESOLUTION THREE-DIMENSIONAL LASER-SCANNING OF THE TYPE SPECIMEN OF EUBRONTES (?) GLENROSENSIS SHULER, 1935, FROM THE COMANCHEAN (LOWER CRETACEOUS) OF TEXAS: IMPLICATIONS FOR DIGITAL ARCHIVING AND PRESERVATION , 2010 .

[28]  Raphaël Cornette,et al.  Photogrammetry for 3D digitizing bones of mounted skeletons: Potential and limits , 2016 .

[29]  P. Upchurch,et al.  Taxonomic affinities of the putative titanosaurs from the Late Jurassic Tendaguru Formation of Tanzania: phylogenetic and biogeographic implications for eusauropod dinosaur evolution , 2019, Zoological Journal of the Linnean Society.

[30]  P. Asbach,et al.  EFFICIENCY , WORKFLOW AND IMAGE QUALITY OF CLINICAL COMPUTED TOMOGRAPHY SCANNING COMPARED TO PHOTOGRAMMETRY ON THE EXAMPLE OF A TYRANNOSAURUS REX SKULL FROM THE MAASTRICHTIAN OF MONTANA , U . S . A . , 2018 .

[31]  Massimiliano Corsini,et al.  A Comparison of Perceptually-Based Metrics for Objective Evaluation of Geometry Processing , 2010, IEEE Transactions on Multimedia.

[32]  Price Llewellyn Ivor QUELÔNIO AMPHICHELYDIA NO CRETÁCEO INFERIOR DO NORDESTE DO BRASILÁ , 1973 .

[33]  Gregory T. Baxter,et al.  The Digital Fish Library: Using MRI to Digitize, Database, and Document the Morphological Diversity of Fish , 2012, PloS one.

[34]  Shanlin Liu,et al.  Eupolybothrus cavernicolus Komerički & Stoev sp. n. (Chilopoda: Lithobiomorpha: Lithobiidae): the first eukaryotic species description combining transcriptomic, DNA barcoding and micro-CT imaging data , 2013, Biodiversity data journal.

[35]  S. Brusatte,et al.  Investigating the enigmatic Aeolosaurini clade: the caudal biomechanics of Aeolosaurus maximus (Aeolosaurini/Sauropoda) using the neutral pose method and the first case of protonic tail condition in Sauropoda , 2020 .

[36]  M. Sutton,et al.  The Herefordshire Lagerstätte: fleshing out Silurian marine life , 2019, Journal of the Geological Society.

[37]  G. Lauder,et al.  Tail-propelled aquatic locomotion in a theropod dinosaur , 2020, Nature.

[38]  Pengfei Li,et al.  A perceptual quality metric for 3D triangle meshes based on spatial pooling , 2018, Frontiers of Computer Science.

[39]  Greg Turk,et al.  Image-driven simplification , 2000, TOGS.

[40]  Neffra A. Matthews,et al.  An Integrated Approach to Three-Dimensional Data Collection at Dinosaur Tracksites in the Rocky Mountain West , 2004 .

[41]  Nesrine Akkari,et al.  A New Dimension in Documenting New Species: High-Detail Imaging for Myriapod Taxonomy and First 3D Cybertype of a New Millipede Species (Diplopoda, Julida, Julidae) , 2015, PloS one.

[42]  Anthony Romilio,et al.  A standard protocol for documenting modern and fossil ichnological data , 2018 .

[43]  Bernice E. Rogowitz,et al.  Are image quality metrics adequate to evaluate the quality of geometric objects? , 2001, IS&T/SPIE Electronic Imaging.

[44]  Ø. Hammer,et al.  PAST: PALEONTOLOGICAL STATISTICAL SOFTWARE PACKAGE FOR EDUCATION AND DATA ANALYSIS , 2001 .

[45]  Ariel E. Marcy,et al.  Low resolution scans can provide a sufficiently accurate, cost- and time-effective alternative to high resolution scans for 3D shape analyses , 2018, PeerJ.

[46]  F. Novas,et al.  An exceptional neurovascular system in abelisaurid theropod skull: New evidence from Skorpiovenator bustingorryi , 2020, Journal of anatomy.

[47]  H. Mallison,et al.  PHOTOGRAMMETRY IN PALEONTOLOGY – A PRACTICAL GUIDE , 2014 .

[48]  S. Lautenschlager,et al.  Reconstructing the past: methods and techniques for the digital restoration of fossils , 2016, Royal Society Open Science.

[49]  A. Herrel,et al.  3D Photogrammetry of Bat Skulls: Perspectives for Macro-evolutionary Analyses , 2019, Evolutionary Biology.