Spectral interpretations of the Interlace polynomial

We relate the interlace polynomials of a graph to the spectra of a quadratic boolean function with respect to a strategic subset of local unitary transforms. By so doing we establish links between graph theory, cryptography, coding theory, and quantum entanglement. We establish the form of the interlace polynomial for certain functions, provide a new interlace polynomial, QHN , and propose a generalisation of the interlace polynomial to hypergraphs. We also prove some conjectures from [13] and equate certain spectral metrics with various evaluations of the interlace polynomial.

[1]  Timo Neumann,et al.  BENT FUNCTIONS , 2006 .

[2]  M. Parker Constabent properties of Golay-Davis-Jedwab sequences , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).

[3]  Béla Bollobás,et al.  The Interlace Polynomial of Graphs at - 1 , 2002, Eur. J. Comb..

[4]  Matthew G. Parker,et al.  Generalised S-Box Nonlinearity , 2003 .

[5]  J. Eisert,et al.  Multiparty entanglement in graph states , 2003, quant-ph/0307130.

[6]  Matthew G. Parker,et al.  Generalized Bent Criteria for Boolean Functions (I) , 2005, IEEE Transactions on Information Theory.

[7]  André Bouchet,et al.  Tutte-martin polynomials and orienting vectors of isotropic systems , 1991, Graphs Comb..

[8]  Matthew G. Parker,et al.  Generalised Bent Criteria for Boolean Functions (II) , 2005, ArXiv.

[9]  Matthew G. Parker,et al.  Univariate and Multivariate Merit Factors , 2004, SETA.

[10]  T. Aaron Gulliver,et al.  Aperiodic propagation criteria for Boolean functions , 2006, Inf. Comput..

[11]  M.G.Parker,et al.  The Quantum Entanglement of Binary and Bipolar Sequences , 2001, quant-ph/0107106.

[12]  C. Tellambura,et al.  A construction for binary sequence sets with low peak-to-average power ratio , 2002, Proceedings IEEE International Symposium on Information Theory,.

[13]  Vincent Rijmen,et al.  The Quantum Entanglement of Binary and Bipolar Sequences , 2001, SETA.

[14]  N. J. A. Sloane,et al.  Quantum Error Correction Via Codes Over GF(4) , 1998, IEEE Trans. Inf. Theory.

[15]  Matthew G. Parker,et al.  Spectral Orbits and Peak-to-Average Power Ratio of Boolean Functions with Respect to the {I, H, N}n Transform , 2004, SETA.

[16]  Béla Bollobás,et al.  A Two-Variable Interlace Polynomial , 2004, Comb..

[17]  Béla Bollobás,et al.  The interlace polynomial of a graph , 2004, J. Comb. Theory, Ser. B.

[18]  T. Aaron Gulliver,et al.  The multivariate merit factor of a Boolean function , 2005, IEEE Information Theory Workshop, 2005..

[19]  Béla Bollobás,et al.  The interlace polynomial: a new graph polynomial , 2000, SODA '00.