Spectral interpretations of the Interlace polynomial
暂无分享,去创建一个
[1] Timo Neumann,et al. BENT FUNCTIONS , 2006 .
[2] M. Parker. Constabent properties of Golay-Davis-Jedwab sequences , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).
[3] Béla Bollobás,et al. The Interlace Polynomial of Graphs at - 1 , 2002, Eur. J. Comb..
[4] Matthew G. Parker,et al. Generalised S-Box Nonlinearity , 2003 .
[5] J. Eisert,et al. Multiparty entanglement in graph states , 2003, quant-ph/0307130.
[6] Matthew G. Parker,et al. Generalized Bent Criteria for Boolean Functions (I) , 2005, IEEE Transactions on Information Theory.
[7] André Bouchet,et al. Tutte-martin polynomials and orienting vectors of isotropic systems , 1991, Graphs Comb..
[8] Matthew G. Parker,et al. Generalised Bent Criteria for Boolean Functions (II) , 2005, ArXiv.
[9] Matthew G. Parker,et al. Univariate and Multivariate Merit Factors , 2004, SETA.
[10] T. Aaron Gulliver,et al. Aperiodic propagation criteria for Boolean functions , 2006, Inf. Comput..
[11] M.G.Parker,et al. The Quantum Entanglement of Binary and Bipolar Sequences , 2001, quant-ph/0107106.
[12] C. Tellambura,et al. A construction for binary sequence sets with low peak-to-average power ratio , 2002, Proceedings IEEE International Symposium on Information Theory,.
[13] Vincent Rijmen,et al. The Quantum Entanglement of Binary and Bipolar Sequences , 2001, SETA.
[14] N. J. A. Sloane,et al. Quantum Error Correction Via Codes Over GF(4) , 1998, IEEE Trans. Inf. Theory.
[15] Matthew G. Parker,et al. Spectral Orbits and Peak-to-Average Power Ratio of Boolean Functions with Respect to the {I, H, N}n Transform , 2004, SETA.
[16] Béla Bollobás,et al. A Two-Variable Interlace Polynomial , 2004, Comb..
[17] Béla Bollobás,et al. The interlace polynomial of a graph , 2004, J. Comb. Theory, Ser. B.
[18] T. Aaron Gulliver,et al. The multivariate merit factor of a Boolean function , 2005, IEEE Information Theory Workshop, 2005..
[19] Béla Bollobás,et al. The interlace polynomial: a new graph polynomial , 2000, SODA '00.