Multidimensional scaling by iterative majorization using radial basis functions
暂无分享,去创建一个
[1] H. Hotelling. Analysis of a complex of statistical variables into principal components. , 1933 .
[2] David J. Hand,et al. A Handbook of Small Data Sets , 1993 .
[3] Andrew R. Webb. An approach to non-linear principal components analysis using radially symmetric kernel functions , 1996, Stat. Comput..
[4] D. A. Wolf. Recent advances in descriptive multivariate analysis , 1996 .
[5] I. D. Hill,et al. An Efficient and Portable Pseudo‐Random Number Generator , 1982 .
[6] J. Barra,et al. Recent Developments in Statistics , 1978 .
[7] W. Heiser. A generalized majorization method for least souares multidimensional scaling of pseudodistances that may be negative , 1991 .
[8] W. J. Krzanowski,et al. Recent Advances in Descriptive Multivariate Analysis. , 1996 .
[9] Trevor F. Cox,et al. Discriminant analysis using non-metric multidimensional scaling , 1993, Pattern Recognit..
[10] John W. Sammon,et al. A Nonlinear Mapping for Data Structure Analysis , 1969, IEEE Transactions on Computers.
[11] J. Kruskal. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis , 1964 .
[12] Keinosuke Fukunaga,et al. A Nonlinear Feature Extraction Algorithm Using Distance Transformation , 1972, IEEE Transactions on Computers.
[13] I. Borg,et al. Geometric Representations of Relational Data , 1981 .
[14] D. Lowe. Novel 'topographic' nonlinear feature extraction using radial basis functions for concentration coding in the 'artificial nose' , 1993 .