Cre/lox-regulated transgenic zebrafish model with conditional myc-induced T cell acute lymphoblastic leukemia

We have created a stable transgenic rag2-EGFP-mMyc zebrafish line that develops GFP-labeled T cell acute lymphoblastic leukemia (T-ALL), allowing visualization of the onset and spread of this disease. Here, we show that leukemias from this transgenic line are highly penetrant and render animals moribund by 80.7 ± 17.6 days of life (±1 SD, range = 50-158 days). These T cell leukemias are clonally aneuploid, can be transplanted into irradiated recipient fish, and express the zebrafish orthologues of the human T-ALL oncogenes tal1/scl and lmo2, thus providing an animal model for the most prevalent molecular subgroup of human T-ALL. Because T-ALL develops very rapidly in rag2-EGFP-mMyc transgenic fish (in which “mMyc” represents mouse c-Myc), this line can only be maintained by in vitro fertilization. Thus, we have created a conditional transgene in which the EGFP-mMyc oncogene is preceded by a loxed dsRED2 gene and have generated stable rag2-loxP-dsRED2-loxP-EGFP-mMyc transgenic zebrafish lines, which have red fluorescent thymocytes and do not develop leukemia. Transgenic progeny from one of these lines can be induced to develop T-ALL by injecting Cre RNA into one-cell-stage embryos, demonstrating the utility of the Cre/lox system in the zebrafish and providing an essential step in preparing this model for chemical and genetic screens designed to identify modifiers of Myc-induced T-ALL.

[1]  Teresa Palomero,et al.  Suppression of apoptosis by bcl-2 overexpression in lymphoid cells of transgenic zebrafish. , 2005, Blood.

[2]  L. Zon,et al.  tp53 mutant zebrafish develop malignant peripheral nerve sheath tumors. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[3]  Andrew P. Weng,et al.  Activating Mutations of NOTCH1 in Human T Cell Acute Lymphoblastic Leukemia , 2004, Science.

[4]  L. Zon,et al.  In vivo tracking of T cell development, ablation, and engraftment in transgenic zebrafish. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Stuart L Schreiber,et al.  Chemical suppression of a genetic mutation in a zebrafish model of aortic coarctation , 2004, Nature Biotechnology.

[6]  A. Ferrando,et al.  Biallelic transcriptional activation of oncogenic transcription factors in T-cell acute lymphoblastic leukemia. , 2004, Blood.

[7]  M. Caligiuri,et al.  Prognostic importance of TLX1 (HOX11) oncogene expression in adults with T-cell acute lymphoblastic leukaemia , 2004, The Lancet.

[8]  A. Ferrando,et al.  Gene expression profiling in T-cell acute lymphoblastic leukemia. , 2003, Seminars in hematology.

[9]  N. Heerema,et al.  Expression of HOX11 in childhood T-lineage acute lymphoblastic leukaemia can occur in the absence of cytogenetic aberration at 10q24: a study from the Children's Cancer Group (CCG) , 2003, Leukemia.

[10]  G. Ryffel,et al.  Tagging muscle cell lineages in development and tail regeneration using Cre recombinase in transgenic Xenopus. , 2003, Nucleic acids research.

[11]  Thierry Soussi,et al.  The UMD‐p53 database: New mutations and analysis tools , 2003, Human mutation.

[12]  David M Langenau,et al.  Myc-Induced T Cell Leukemia in Transgenic Zebrafish , 2003, Science.

[13]  A. Ferrando,et al.  Molecular cloning and developmental expression of Tlx (Hox11) genes in zebrafish (Danio rerio) , 2002, Mechanisms of Development.

[14]  J. Zucman‐Rossi,et al.  HOX11L2 expression defines a clinical subtype of pediatric T-ALL associated with poor prognosis. , 2002, Blood.

[15]  C. Harris,et al.  The IARC TP53 database: New online mutation analysis and recommendations to users , 2002, Human mutation.

[16]  Nancy Hopkins,et al.  Insertional mutagenesis in zebrafish rapidly identifies genes essential for early vertebrate development , 2002, Nature Genetics.

[17]  J. Downing,et al.  Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. , 2002, Cancer cell.

[18]  E. Lander,et al.  Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. , 2002, Cancer cell.

[19]  J. Gilley,et al.  One INK4 gene and no ARF at the Fugu equivalent of the human INK4A/ARF/INK4B tumour suppressor locus , 2001, Oncogene.

[20]  M. Fishman,et al.  Convergence of distinct pathways to heart patterning revealed by the small molecule concentramide and the mutation heart-and-soul , 2001, Current Biology.

[21]  R. Heilig,et al.  A new recurrent and specific cryptic translocation, t(5;14)(q35;q32), is associated with expression of the Hox11L2 gene in T acute lymphoblastic leukemia , 2001, Leukemia.

[22]  G. Ryffel,et al.  FLP and Cre recombinase function in Xenopus embryos. , 2001, Nucleic acids research.

[23]  Steven S. Vogel,et al.  Concurrent expression of recombination activating genes 1 and 2 in zebrafish olfactory sensory neurons , 2001, Genesis.

[24]  U. Kees,et al.  Promoter demethylation accompanies reactivation of the HOX11 proto‐oncogene in leukemia , 2000, Genes, chromosomes & cancer.

[25]  J. Dowling,et al.  Small molecule developmental screens reveal the logic and timing of vertebrate development. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[26]  A. Ferrando,et al.  Clinical implications of recurring chromosomal and associated molecular abnormalities in acute lymphoblastic leukemia. , 2000, Seminars in hematology.

[27]  J. Rast,et al.  Characterization of three isotypes of immunoglobulin light chains and T-cell antigen receptor α in zebrafish , 2000, Immunogenetics.

[28]  P. D. de Jong,et al.  The t(14;21)(q11.2;q22) chromosomal translocation associated with T-cell acute lymphoblastic leukemia activates the BHLHB1 gene. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[29]  M. Roussel,et al.  Disruption of the ARF-Mdm2-p53 tumor suppressor pathway in Myc-induced lymphomagenesis. , 1999, Genes & development.

[30]  J L Cleveland,et al.  Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. , 1998, Genes & development.

[31]  A T Look,et al.  Oncogenic transcription factors in the human acute leukemias. , 1997, Science.

[32]  D A Kane,et al.  The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. , 1996, Development.

[33]  A. Schier,et al.  A genetic screen for mutations affecting embryogenesis in zebrafish. , 1996, Development.

[34]  M Aguet,et al.  Inducible gene targeting in mice , 1995, Science.

[35]  S. Shurtleff,et al.  Frequent deletion of p16INK4a/MTS1 and p15INK4b/MTS2 in pediatric acute lymphoblastic leukemia. , 1995, Blood.

[36]  M. Hsiao,et al.  Clinical significance of p53 mutations in relapsed T-cell acute lymphoblastic leukemia. , 1994, Blood.

[37]  K. Rajewsky,et al.  Deletion of a DNA polymerase beta gene segment in T cells using cell type-specific gene targeting. , 1994, Science.

[38]  R. Berger,et al.  Infrequent mutations in the P53 gene in primary human T-cell acute lymphoblastic leukemia. , 1991, Leukemia.

[39]  D. Schatz,et al.  RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination. , 1990, Science.

[40]  David Baltimore,et al.  The V(D)J recombination activating gene, RAG-1 , 1989, Cell.

[41]  M. Oken,et al.  Multiple recurrent genomic defects in follicular lymphoma. A possible model for cancer. , 1987, The New England journal of medicine.