Management of multipartite genomes: the Vibrio cholerae model.

[1]  R. Ghirlando,et al.  Initiator protein dimerization plays a key role in replication control of Vibrio cholerae chromosome 2 , 2014, Nucleic acids research.

[2]  G. Laloux,et al.  G1-arrested newborn cells are the predominant infectious form of the pathogen Brucella abortus , 2014, Nature Communications.

[3]  L. Mureşan,et al.  The Two Cis-Acting Sites, parS1 and oriC1, Contribute to the Longitudinal Organisation of Vibrio cholerae Chromosome I , 2014, PLoS genetics.

[4]  D. Chattoraj,et al.  Chromosome I Controls Chromosome II Replication in Vibrio cholerae , 2014, PLoS genetics.

[5]  V. Barbe,et al.  Fuse or die: how to survive the loss of Dam in Vibrio cholerae , 2014, Molecular microbiology.

[6]  A. Treuner-Lange,et al.  Tracking of Chromosome and Replisome Dynamics in Myxococcus xanthus Reveals a Novel Chromosome Arrangement , 2013, PLoS genetics.

[7]  N. Moran,et al.  Small, Smaller, Smallest: The Origins and Evolution of Ancient Dual Symbioses in a Phloem-Feeding Insect , 2013, Genome biology and evolution.

[8]  D. Chattoraj,et al.  Evidence for Two Different Regulatory Mechanisms Linking Replication and Segregation of Vibrio cholerae Chromosome II , 2013, PLoS genetics.

[9]  T. Katayama,et al.  DnaA binding locus datA promotes DnaA-ATP hydrolysis to enable cell cycle-coordinated replication initiation , 2012, Proceedings of the National Academy of Sciences.

[10]  A. Løbner-Olesen,et al.  rctB mutations that increase copy number of Vibrio cholerae oriCII in Escherichia coli. , 2012, Plasmid.

[11]  S. C. Winans,et al.  The ABCs of plasmid replication and segregation , 2012, Nature Reviews Microbiology.

[12]  D. Cameron,et al.  A multidomain hub anchors the chromosome segregation and chemotactic machinery to the bacterial pole. , 2012, Genes & development.

[13]  O. Espéli,et al.  Long-Range Chromosome Organization in E. coli: A Site-Specific System Isolates the Ter Macrodomain , 2012, PLoS genetics.

[14]  D. Chattoraj,et al.  Replication regulation of Vibrio cholerae chromosome II involves initiator binding to the origin both as monomer and as dimer , 2012, Nucleic acids research.

[15]  D. Chattoraj,et al.  A 29-mer site regulates transcription of the initiator gene as well as function of the replication origin of Vibrio cholerae chromosome II. , 2012, Plasmid.

[16]  D. Mazel,et al.  Genome Engineering in Vibrio cholerae: A Feasible Approach to Address Biological Issues , 2012, PLoS genetics.

[17]  M. Waldor,et al.  Regulatory Cross-Talk Links Vibrio cholerae Chromosome II Replication and Segregation , 2011, PLoS genetics.

[18]  D. Chattoraj,et al.  Transition from a plasmid to a chromosomal mode of replication entails additional regulators , 2011, Proceedings of the National Academy of Sciences.

[19]  D. Chattoraj,et al.  Participation of Chromosome Segregation Protein ParAI of Vibrio cholerae in Chromosome Replication , 2011, Journal of bacteriology.

[20]  B. Koch,et al.  Replication of Vibrio cholerae Chromosome I in Escherichia coli: Dependence on Dam Methylation , 2010, Journal of bacteriology.

[21]  D. Chattoraj,et al.  DNA Adenine Methylation Is Required to Replicate Both Vibrio cholerae Chromosomes Once per Cell Cycle , 2010, PLoS genetics.

[22]  Tsutomu Katayama,et al.  Regulation of the replication cycle: conserved and diverse regulatory systems for DnaA and oriC , 2010, Nature Reviews Microbiology.

[23]  Stéphane Robin,et al.  The MatP/matS Site-Specific System Organizes the Terminus Region of the E. coli Chromosome into a Macrodomain , 2008, Cell.

[24]  J. Errington,et al.  Dynamic Control of the DNA Replication Initiation Protein DnaA by Soj/ParA , 2008, Cell.

[25]  S. Kennedy,et al.  FtsK-Dependent Dimer Resolution on Multiple Chromosomes in the Pathogen Vibrio cholerae , 2008, PLoS genetics.

[26]  M. Waldor,et al.  ATP negatively regulates the initiator protein of Vibrio cholerae chromosome II replication , 2008, Proceedings of the National Academy of Sciences.

[27]  Roy D. Welch,et al.  Complete genome sequence of the myxobacterium Sorangium cellulosum , 2007, Nature Biotechnology.

[28]  J. Livny,et al.  Distribution of Centromere-Like parS Sites in Bacteria: Insights from Comparative Genomics , 2007, Journal of bacteriology.

[29]  R. B. Jensen,et al.  The two chromosomes of Vibrio cholerae are initiated at different time points in the cell cycle , 2007, The EMBO journal.

[30]  Christopher M Thomas,et al.  Deletion of the parA (soj) Homologue in Pseudomonas aeruginosa Causes ParB Instability and Affects Growth Rate, Chromosome Segregation, and Motility , 2007, Journal of bacteriology.

[31]  M. Waldor,et al.  Distinct Centromere-Like parS Sites on the Two Chromosomes of Vibrio spp , 2007, Journal of bacteriology.

[32]  M. Waldor,et al.  par genes and the pathology of chromosome loss in Vibrio cholerae , 2007, Proceedings of the National Academy of Sciences.

[33]  M. Waldor,et al.  A dynamic, mitotic-like mechanism for bacterial chromosome segregation. , 2006, Genes & development.

[34]  M. Waldor,et al.  Independent Control of Replication Initiation of the Two Vibrio cholerae Chromosomes by DnaA and RctB , 2006, Journal of bacteriology.

[35]  Pierre Brézellec,et al.  DomainSieve: a protein domain-based screen that led to the identification of dam-associated genes with potential link to DNA maintenance , 2006, Bioinform..

[36]  P. Srivastava,et al.  Transcriptional inactivation of a regulatory site for replication of Vibrio cholerae chromosome II , 2006, Proceedings of the National Academy of Sciences.

[37]  L. Shapiro,et al.  MipZ, a Spatial Regulator Coordinating Chromosome Segregation with Cell Division in Caulobacter , 2006, Cell.

[38]  K. Nordström,et al.  Copy‐number control of the Escherichia coli chromosome: a plasmidologist's view , 2006, EMBO reports.

[39]  M. Waldor,et al.  Autorepression of RctB, an Initiator of Vibrio cholerae Chromosome II Replication , 2006, Journal of bacteriology.

[40]  P. Srivastava,et al.  Multipartite Regulation of rctB, the Replication Initiator Gene of Vibrio cholerae Chromosome II , 2005, Journal of bacteriology.

[41]  Kazuhisa Okada,et al.  Vibrios Commonly Possess Two Chromosomes , 2005, Journal of bacteriology.

[42]  Christian Lesterlin,et al.  Genetic recombination and the cell cycle: what we have learned from chromosome dimers , 2004, Molecular microbiology.

[43]  M. Rossignol,et al.  Macrodomain organization of the Escherichia coli chromosome , 2004, The EMBO journal.

[44]  M. Waldor,et al.  Synchronous replication initiation of the two Vibrio cholerae chromosomes , 2004, Current Biology.

[45]  Matthew K. Waldor,et al.  Distinct Replication Requirements for the Two Vibrio cholerae Chromosomes , 2003, Cell.

[46]  Guillermo Dávila,et al.  Architectures : Novel Genomic Sinorhizobium meliloti Natural Genomic Design in , 2006 .

[47]  Masahira Hattori,et al.  Genome sequence of Vibrio parahaemolyticus: a pathogenic mechanism distinct from that of V cholerae , 2003, The Lancet.

[48]  J A Eisen,et al.  The Genome of the Natural Genetic Engineer Agrobacterium tumefaciens C58 , 2001, Science.

[49]  J. Kaper,et al.  The Vibrio cholerae genome contains two unique circular chromosomes. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[50]  S. Moriya,et al.  Negative control of replication initiation by a novel chromosomal locus exhibiting exceptional affinity for Escherichia coli DnaA protein. , 1998, Genes & Development.

[51]  D. Chattoraj,et al.  Chaperone‐mediated reduction of RepA dimerization is associated with RepA conformational change , 1997, Molecular microbiology.

[52]  A. Grossman,et al.  spo0J is required for normal chromosome segregation as well as the initiation of sporulation in Bacillus subtilis , 1994, Journal of bacteriology.

[53]  E. Boye,et al.  The role of dam methyltransferase in the control of DNA replication in E. coli , 1990, Cell.

[54]  RESEARCH ARTICLE Research article , 2000 .

[55]  M. Ruiz-Echevarría,et al.  Copyright © 1998, American Society for Microbiology Replication and Control of Circular Bacterial Plasmids , 2022 .