Increasing the discrimination power of the co-occurrence matrix-based features

This paper is concerned with an approach to exploiting information available from the co-occurrence matrices computed for different distance parameter values. A polynomial of degree n is fitted to each of 14 Haralick's coefficients computed from the average co-occurrence matrices evaluated for several distance parameter values. Parameters of the polynomials constitute a set of new features. The experimental investigations performed substantiated the usefulness of the approach.

[1]  Michael Unser,et al.  Texture classification and segmentation using wavelet frames , 1995, IEEE Trans. Image Process..

[2]  Matti Pietikäinen,et al.  Outex - new framework for empirical evaluation of texture analysis algorithms , 2002, Object recognition supported by user interaction for service robots.

[3]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[4]  Wilson S. Geisler,et al.  Multichannel Texture Analysis Using Localized Spatial Filters , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  He Xu,et al.  Textured image segmentation using autoregressive model and artificial neural network , 1995, Pattern Recognit..

[6]  Hang Joon Kim,et al.  Support Vector Machines for Texture Classification , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Ian Dennis Longstaff,et al.  Genetic Algorithm Optimization of Adaptive Multi-Scale GLCM Features , 2003, Int. J. Pattern Recognit. Artif. Intell..

[8]  Mary M. Galloway,et al.  Texture analysis using gray level run lengths , 1974 .

[9]  Fritz Albregtsen,et al.  Low dimensional adaptive texture feature vectors from class distance and class difference matrices , 2004, IEEE Transactions on Medical Imaging.

[10]  Glenn Healey,et al.  Markov Random Field Models for Unsupervised Segmentation of Textured Color Images , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Bertrand Zavidovique,et al.  Content based image retrieval using motif cooccurrence matrix , 2004, Image Vis. Comput..

[12]  Antanas Verikas,et al.  Integrating Global and Local Analysis of Color, Texture and Geometrical Information for Categorizing Laryngeal Images , 2006, Int. J. Pattern Recognit. Artif. Intell..

[13]  Antanas Verikas,et al.  Towards a computer-aided diagnosis system for vocal cord diseases , 2006, Artif. Intell. Medicine.